一种探测激光延时反馈的控制系统

    公开(公告)号:CN115685242A

    公开(公告)日:2023-02-03

    申请号:CN202211350566.8

    申请日:2022-10-31

    IPC分类号: G01S17/89 G01S7/481 G01S7/487

    摘要: 本申请提供了一种探测激光延时反馈的控制系统。所述系统包括:激光组件、成像组件、延时发生器和处理器。本申请通过成像组件能够采集到条纹图像,通过处理器对条纹图像中光斑区域进行数据分析和统计,获取条纹图像中光斑质心的位置信息,进而获得多个动态延时参数的参数值;利用多个动态延时参数的参数值对延时发生器进行设置;延时发生器基于设置的多个动态延时参数的参数值控制所述成像组件采集探测激光的条纹图像,从而进行激光动态延时反馈调节。提高了探测激光时序准确性,提高了条纹图像的成像质量,进而提高了测绘准确性与测量效率。

    一种激光器离线调试装置及调试方法

    公开(公告)号:CN112563865A

    公开(公告)日:2021-03-26

    申请号:CN202011459953.6

    申请日:2020-12-11

    IPC分类号: H01S3/00 H01S3/081 H01S3/086

    摘要: 一种激光器离线调试装置及调试方法,属于激光器调试技术领域。两组调试机构镜像设置,激光器发射的激光经第一反射镜、第二反射镜后平行反射至谐振腔镜,谐振腔镜的反射光经第三反射镜反射后进入CCD相机的中心,CCD相机的信号输出端与电脑连接。在谐振腔镜位置处安装辅助镜片;调试激光器的谐振腔获得最佳输出;依次摆放各部件;调整第一反射镜、第二反射镜、第三反射镜位置和角度;调整小孔光阑的位置;将CCD相机连接到电脑上,在电脑上记录两组光斑位置;取下辅助镜片,放置谐振腔镜后调节角度,使反射光成像到上述光斑位置。本发明解决了军用激光器谐振腔镜片难以最佳化调试的缺点,调试方便且节省了调试时间,调试精度更高。

    一种机载测绘激光雷达扫帚式扫描系统及其扫描方法

    公开(公告)号:CN106772314B

    公开(公告)日:2019-04-26

    申请号:CN201611131238.3

    申请日:2016-12-09

    IPC分类号: G01S7/481

    摘要: 一种机载测绘激光雷达扫帚式扫描系统及其扫描方法,它涉及机载测绘激光雷达扫描系统及其扫描方法。解决现有推帚式扫描体制沿平台运动轨迹上被测区域的宽度将受到探测器视场角的限制的问题。扫描系统包括激光器、负柱面镜、两个正柱面镜、镀膜反射镜、反射镜安装架、光栅编码器、谐波减速器及伺服电机;方法:机载测绘激光雷达扫帚式扫描系统在机载平台直线运动的基础上,激光器射出的激光束依次经过负柱面镜、第一正柱面镜及第二正柱面镜形成扇形激光束,并射到镀膜反射镜上,经镀膜反射镜反射后在地面形成线型激光脚点,通过镀膜反射镜的往复转动来实现地面上的线型激光脚点沿Z轴方向发生平移,最终实现对地面被测区域的扫帚式扫描。

    一种基于光纤谐振腔的倏逝波型光声光谱微量气体传感器及测量方法

    公开(公告)号:CN105548023B

    公开(公告)日:2019-04-02

    申请号:CN201510990762.5

    申请日:2015-12-28

    IPC分类号: G01N21/17

    摘要: 本发明公开了一种基于光纤谐振腔的倏逝波型光声光谱微量气体传感器及测量方法,所述传感器由半导体激光源、光纤合束器、锥形光纤、石英音叉、相位调制器构成,其测量方法如下:步骤一、半导体激光源发射出的激光输入光纤合束器,经相位调制器后使得光纤合束器构成光学谐振腔,光纤内的激光功率得到放大增强,继而使得锥形光纤处产生较强的光学倏逝场;步骤二、待测目标气体吸收锥形光纤处的倏逝波场能量,产生声波场,石英音叉探测声波信号,反演气体浓度。本发明有效地提高了激光激发功率,进而极大地改进了光声光谱气体传感器的探测灵敏度。

    一种可调谐激光频率扩展的方法

    公开(公告)号:CN108281883A

    公开(公告)日:2018-07-13

    申请号:CN201810008905.1

    申请日:2018-01-04

    IPC分类号: H01S3/109

    摘要: 本发明实施例涉及一种可调谐激光频率扩展的方法,包括如下步骤:步骤101:产生某一波长λ的基频光,并将所述基频光以一角度θ1入射至倍频晶体进行倍频,所述倍频为I类相位匹配,其相位匹配条件。步骤102:从所述倍频晶体出射的基频光和倍频光以一角度 入射至佩林布洛卡棱镜长直角边。步骤103:所述基频光和倍频光在所述佩林布洛卡棱镜内发生折射,分别沿不同方向从所述佩林布洛卡棱镜射出,所述倍频光从所述佩林布洛卡棱镜射出后沿与原入射方向垂直的方向射出。步骤104:所述倍频光从所述佩林布洛卡棱镜射出后入射至一45°全反射镜,所述全反射镜使所述倍频光沿原基频光方向输出。通过采用佩林布洛卡棱镜可有效的对倍频光与基频光进行分离。

    一种肿瘤分类鉴别模型的建立方法及其应用

    公开(公告)号:CN108169184A

    公开(公告)日:2018-06-15

    申请号:CN201711353236.3

    申请日:2017-12-15

    IPC分类号: G01N21/552

    摘要: 一种肿瘤分类鉴别模型的建立方法及其应用,属于医学疾病诊断领域。本发明针对目前病理诊断需要对肿瘤病灶标本定位和采集,样本预处理复杂且耗时长的问题;以及现有技术无法对早期肿瘤、微小残留病、循环肿瘤等微小肿瘤组织的筛查和诊断问题,提供了一种肿瘤分类鉴别模型的建立方法,该方法的建立是基于生物液样本的等离子体发射光谱,并结合化学计量学和机器学习分类算法实现的。通过该方法建立的模型可集成到肿瘤诊断与筛查仪器中,为实现肿瘤的大规模筛查、早期肿瘤以及处于癌前病变阶段疾病的诊断提供了一种快速准确的方法。

    一种多点测量的光声光谱气体传感器及测量方法

    公开(公告)号:CN105510233A

    公开(公告)日:2016-04-20

    申请号:CN201510984967.2

    申请日:2015-12-25

    IPC分类号: G01N21/17 G01N21/01

    摘要: 本发明公开了一种多点测量的光声光谱气体传感器及测量方法,所述光声光谱气体传感器由半导体激光源、光纤分束器、石英音叉、锁相放大器构成,其中:半导体激光器输出的激光束经光纤分束器分为N束激光后传输至N个石英音叉处,石英音叉将声波信号转化为电流信号传输至锁相放大器。利用其实现微量气体传感测量的方法如下:步骤一、半导体激光源发射出的激光通过光纤分束器将激光束分为N束,N>1;步骤二、待测目标气体吸收光纤分束器输出的激光能量,产生声波场,N个石英音叉接受声波信号并转化为电流信号,锁相放大器对此电流信号进行解调,反演气体浓度。本发明可以实现空间浓度场多点的同时测量,具有简单易行、可靠性高、成本低的优点。

    纳秒激光诱导等离子体提高气体碳氢燃料稳燃极限的方法及实现该方法的装置

    公开(公告)号:CN103343735B

    公开(公告)日:2015-08-19

    申请号:CN201310308639.1

    申请日:2013-07-22

    IPC分类号: F03H1/00

    摘要: 纳秒激光诱导等离子体提高气体碳氢燃料稳燃极限的方法及实现该方法的装置,涉及一种提高气体碳氢燃料稳燃极限的方法及实现该方法的装置。它是为了解决现有气流速度超临界燃烧系统中存在的燃烧不稳定、火焰易吹熄的问题。其方法:将预混罐中的混合可燃气体通入石英管中,并在石英管口处将混合气体点燃,形成本生灯火焰,并使混合可燃气体的流速处于超临界状态;采用纳秒激光器发射激光光束,并将所述纳秒激光光束聚焦在混合可燃气体的未燃区域,诱导混合可燃气体产生等离子体,实现提高火焰稳定极限。其装置:预混罐的出气口与石英管的末端连通;Nd:YAG激光器产生的激光聚焦至石英管的出气口上。本发明适用于提高气体碳氢燃料稳燃极限。

    一种测量发光材料非线性光学性质的方法

    公开(公告)号:CN102879334B

    公开(公告)日:2015-06-03

    申请号:CN201210186079.2

    申请日:2012-06-07

    IPC分类号: G01N21/17

    摘要: 本发明专利涉及发光材料非线性光学性质的测量方法。按照国际专利分类表(IPC)划分属于物理部,仪器分部,测量;测试类,借助于测定材料的化学或物理性质来测试或分析材料组中的便于进行光学测试的装置或仪器领域(G01N21/01)。本发明主要针对现有Z扫描技术无法测量发光材料非线性光学性质的不足,通过在测试装置中引入光学滤波技术来消除发光材料的荧光发射对Z扫描测试产生的影响。提出一种改进的可以针对发光材料同时进行非线性光学吸收效应及非线性折射效应测试的方法。