冲击噪声环境下基于演化神经网络的雷达信号识别方法

    公开(公告)号:CN113189558A

    公开(公告)日:2021-07-30

    申请号:CN202110469718.5

    申请日:2021-04-28

    Abstract: 本发明提供一种冲击噪声环境下基于演化神经网络的雷达信号识别方法,包括:在冲击噪声环境计算训练集中第m个雷达辐射源信号序列的分数低阶协方差谱;提取四种特征参数,并将这四种特征参数组成特征向量判断是否所有雷达辐射源信号序列分数低阶协方差谱的四种特征参数都被提取完毕;利用训练集的特征矩阵和设计双链编码的量子水蒸发优化算法寻找概率神经网络的最优平滑因子σ,量子水蒸发优化算法记做QWEO;将寻找到的全局最优位置赋值给平滑因子σ,利用优化后的概率神经网络模型对测试集或实测数据集进行识别,给出识别结果。本发明降低了识别方法的计算复杂度,解决了特征指数0<α≤2时冲击噪声环境下的雷达调制信号识别问题。

    一种进化长短时记忆网络的调制信号识别方法

    公开(公告)号:CN114172769B

    公开(公告)日:2023-10-03

    申请号:CN202111421628.5

    申请日:2021-11-26

    Abstract: 本发明提供一种进化长短时记忆网络的调制信号识别方法,包括:构造数据集;构造目标函数;初始化旗鱼捕食搜索机制的参数;计算适应度值,并确定精英旗鱼位置和受伤沙丁鱼位置;旗鱼攻击选择策略,更新旗鱼的位置;追捕猎物,更新沙丁鱼的位置;计算适应度值,确定被旗鱼捕食的沙丁鱼,确定精英旗鱼和受伤沙丁鱼位置;判断是否达到终止迭代条件,即达到最大迭代次数或者所有的沙丁鱼都被旗鱼捕获,若满足终止迭代条件,则继续向下运行,否则令g=g+1,返回继续;使用训练集训练具有最优超参数的数字通信信号调制识别LSTM网络。本发明设计了文化旗鱼捕食搜索机制来获得最优的LSTM网络模型参数。

    一种基于多网络融合模型的ADS-B信号认证方法

    公开(公告)号:CN116707862A

    公开(公告)日:2023-09-05

    申请号:CN202310477858.6

    申请日:2023-04-28

    Abstract: 一种基于多网络融合模型的ADS‑B信号认证方法,它涉及一种ADS‑B信号认证方法。本发明为了解决航空环境所存在的非法入侵、辨识模糊的问题。本发明用航空器信号数据集对VAE模型进行训练,使模型能够在误差允许范围内对信号实现特征压缩与重构,并基于欧式空间误差度量方法,计算原始信号与重构信号之间的重构误差,在保证不高于10%的虚警概率下,确定重构误差门限,对信号重构误差高于门限的识别为异常设备,进行非法拦截,实现航空器信号的非法认证。本发明属于无线通信设备识别技术领域。

    基于量子帝王蝶优化机制的双层异构网络频谱分配方法

    公开(公告)号:CN112217678B

    公开(公告)日:2023-03-17

    申请号:CN202011097353.X

    申请日:2020-10-14

    Abstract: 本发明提供一种基于量子帝王蝶优化机制的双层异构网络频谱分配方法,包括:建立双层异构网络系统模型;得到帝王蝶的整数编码位置;计算所有帝王蝶的适应度值,得到全局最优量子位置及其对应的全局最优位置;对帝王蝶种群排序,分为两个帝王蝶子种群;更新子种群中每个帝王蝶个体的过渡量子位置;合并两个新生成的子种群为一个新的过渡种群,更新帝王蝶种群的量子位置,计算量子帝王蝶的适应度值,更新全局最优量子位置和全局最优位置;判断是否达到最大迭代次数,若是则输出全局最优量子位置和全局最优位置,全局最优位置即为频谱分配的最佳方案;否则令迭代次数加1,返回进行新一轮的迭代。本发明解决整数离散优化的双层异构网络频谱分配问题。

    强冲击噪声下基于嵌套阵列的鲁棒动态测向方法

    公开(公告)号:CN112800596B

    公开(公告)日:2022-12-13

    申请号:CN202110028619.3

    申请日:2021-01-11

    Abstract: 本发明提供一种强冲击噪声下基于嵌套阵列的鲁棒动态测向方法,包括:建立动态测向模型;初始化搜索空间;初始化所有个体量子位置并设定相关参数;构造适应度函数,计算适应度函数值、平均适应度值,计算整个生态系统当前代的平均适应度值;根据量子标杆学习机制实现寻优搜索过程;判断是否达到最大迭代次数G,若达到则中止循环迭代,输出外部标杆的量子位置和位置并进入下一步;判断是否达到最大快拍数Kp,若未达到,更新下一次快拍时P个方位角的搜索空间,返回步骤三;否则,输出动态测向结果。本发明在冲击噪声下设计了加权无穷范数低阶差分矩阵,通过将嵌套阵列虚拟为均匀线阵或近似均匀线阵,并利用极大似然测向方法实现了动态测向。

    一种基于量子犀牛搜索机理的盲源分离方法

    公开(公告)号:CN112036453B

    公开(公告)日:2022-04-29

    申请号:CN202010816157.7

    申请日:2020-08-14

    Abstract: 本发明提供一种基于量子犀牛搜索机理的盲源分离方法,设计了基于两种不同的独立性判据设计的混合优化目标函数,即基于最大化峰度和最大化负熵两种独立性判据设计混合优化目标函数,赋予两种判据相应的权重系数,可以根据混合优化目标函数值随权重系数的变化情况判断出智能计算方法的最佳判据,从而得到更加精确的盲源分离结果。进而设计了一种基于量子犀牛搜索机理及混合优化目标函数的盲源分离方法。本发明所设计的方法可以实现混叠信号的盲源分离,具有收敛速度快、分离精度高、性能稳定等优势,拥有着广泛的应用前景。

    基于量子海鸥演化机制加权Myriad滤波器设计方法

    公开(公告)号:CN113239628A

    公开(公告)日:2021-08-10

    申请号:CN202110611609.2

    申请日:2021-06-02

    Abstract: 本发明公开了一种基于量子海鸥演化机制加权Myriad滤波器设计方法,包括:构造通过冲击噪声信道的信号,并划分训练集和测试集;确定加权滤波器最优参数的目标函数;初始化量子海鸥机制的参数;计算适应度值,确定量子海鸥的最优量子位置;量子海鸥执行迁移操作;量子海鸥执行攻击操作并更新其量子位置;更新量子海鸥的适应度值及最优量子位置;判断是否达到最大迭代次数,若达到最大迭代次数,则终止迭代,继续往下执行;否则返回;使用具有最优权值参数和线性度参数的加权Myriad滤波器对测试集中的信号或待滤波信号进行处理。本发明结合量子计算机制和海鸥优化机制,有更好的全局收敛性和收敛速度,具有鲁棒性强,编程简单等优点。

    强冲击噪声下基于嵌套阵列的鲁棒动态测向方法

    公开(公告)号:CN112800596A

    公开(公告)日:2021-05-14

    申请号:CN202110028619.3

    申请日:2021-01-11

    Abstract: 本发明提供一种强冲击噪声下基于嵌套阵列的鲁棒动态测向方法,包括:建立动态测向模型;初始化搜索空间;初始化所有个体量子位置并设定相关参数;构造适应度函数,计算适应度函数值、平均适应度值,计算整个生态系统当前代的平均适应度值;根据量子标杆学习机制实现寻优搜索过程;判断是否达到最大迭代次数G,若达到则中止循环迭代,输出外部标杆的量子位置和位置并进入下一步;判断是否达到最大快拍数Kp,若未达到,更新下一次快拍时P个方位角的搜索空间,返回步骤三;否则,输出动态测向结果。本发明在冲击噪声下设计了加权无穷范数低阶差分矩阵,通过将嵌套阵列虚拟为均匀线阵或近似均匀线阵,并利用极大似然测向方法实现了动态测向。

Patent Agency Ranking