一种多无人机协同动态波达方向估计方法

    公开(公告)号:CN116256694A

    公开(公告)日:2023-06-13

    申请号:CN202310082026.4

    申请日:2023-02-08

    Abstract: 本发明公开了一种多无人机协同动态波达方向估计方法,使用多个无人机,每个无人机搭载一根接收天线,组成结构可变的信号接收阵列,根据待测信源数,选择合适的阵列结构,推导出该结构下接收数据的分数低阶协方差阵或虚拟分数低阶协方差阵列,进而推导出极大似然方程,通过文化候鸟机制求解该方程,得到一次快拍的波达方向估计结果,通过更新方程更新加权样本分数低阶协方差阵列,重复上述求解过程,可得到最终的动态波达方向估计结果,解决现有波达方向估计方法无法兼顾无人机机动性、动态波达方向估计、冲击噪声环境下波达方向估计难题,同时突破了固定阵列结构的局限。

    一种量子乌燕鸥机制的多无人机协作频谱感知方法

    公开(公告)号:CN115915420A

    公开(公告)日:2023-04-04

    申请号:CN202211218926.9

    申请日:2022-10-07

    Abstract: 本发明提供一种量子乌燕鸥机制的多无人机协作频谱感知方法,建立基于量子乌燕鸥机制的多无人机频谱感知模型,以频谱感知技术的检测概率为目标,设计了量子编码的乌燕鸥量子位置演化机制,得到一种新的量子乌燕鸥机制方法,以量子乌燕鸥的位置作为认知无人机用户的权重向量,最终计算得到最优权重向量。量子乌燕鸥机制克服了以往经典算法收敛性能较差的弊端,并提升了寻优速率。本发明设计了一种量子乌燕鸥机制的多无人机协作频谱感知方法,该方法目的是求取认知无人机用户的最优权重向量,以确定认知无人机用户对全局感知的贡献大小,为后续对无人机进行频谱分配提供了优势条件。

    基于任务切片的异构多无人机协同任务分配方法

    公开(公告)号:CN114020034A

    公开(公告)日:2022-02-08

    申请号:CN202111423642.9

    申请日:2021-11-26

    Abstract: 本发明提供一种基于任务切片的异构多无人机协同任务分配方法,包括:建立基于任务切片的异构多无人机协同任务分配模型;异构无人机对目标执行所分配子任务;建立异构多无人机协同任务分配评价指标函数;初始化量子镜像鲭鲨群并设定参数;定义并计算量子镜像鲭鲨与猎物的镜像距离;根据量子镜像鲭鲨与猎物的镜像距离对全部量子镜像鲭鲨排序;量子镜像鲭鲨依次执行围绕、追踪、游曳和沉浮模式,并在执行过程中使用模拟量子旋转门来演化量子镜像鲭鲨的量子位置;应用贪心选择策略,选择量子镜像鲭鲨的量子位置;演进终止判断,输出任务分配方案。本发明设计了量子镜像鲭鲨优化机制以高效实现异构多无人机协同任务分配方案的求解过程。

    量子大马哈鱼洄游机制演化博弈的水下无人集群任务分配方法

    公开(公告)号:CN113095465A

    公开(公告)日:2021-07-09

    申请号:CN202110358000.9

    申请日:2021-04-01

    Abstract: 本发明提供一种量子大马哈鱼洄游机制演化博弈的水下无人集群任务分配方法,包括:建立水下无人集群任务分配模型;初始化量子熊群和人群位置;根据适应度函数计算量子熊群和人群的大马哈鱼密度;对量子熊群及人群的量子旋转角和位置进行更新;形成混合策略;判断是否到达最大迭代次数,如达到则终止迭代;如未达到,则令t=t+1,并返回步骤三继续执行;输出所得最终混合策略G、G'、它们最大值所对应的策略即为收益期望最大的策略。本发明使用量子大马哈鱼洄游机制演化博弈论对水下无人集群进行任务部署分配,通过计算各部署所得到的损失比,调整部署分配方式,并通过混合策略优劣性判别所获得的混合策略的好坏,从而输出收益期望最高的部署分配方式。

    基于量子鲨鱼机制的AUV全局路径规划方法

    公开(公告)号:CN112947506A

    公开(公告)日:2021-06-11

    申请号:CN202110468435.9

    申请日:2021-04-28

    Abstract: 本发明提供一种基于量子鲨鱼机制的AUV全局路径规划方法,采用多Lamb涡流叠加技术和障碍物栅格等效技术来实现环境建模。本发明所提供的AUV全局路径规划模型包括决策变量设计、航行代价设计、约束条件设计和代价函数设计四部分,充分考虑了AUV航行路径的安全性、高效性和可靠性,将具有更好的实用性。本发明设计的量子鲨鱼优化机制,可以快速得到AUV全局路径规划路线,其仿生于鲨鱼捕食过程并结合模拟量子旋转门来演化鲨鱼量子态,收敛速度快、收敛精度高,且具有更好的鲁棒性。仿真实验证明了基于量子鲨鱼机制的AUV全局路径规划方法的有效性,且相对于传统的路径规划方法搜索速度更快、精度更高。

    基于多目标量子磷虾群机制的多无人机任务分配方法

    公开(公告)号:CN112926825A

    公开(公告)日:2021-06-08

    申请号:CN202110079047.1

    申请日:2021-01-21

    Abstract: 本发明提供一种基于多目标量子磷虾群机制的多无人机任务分配方法,针对当无人机任务分配过程中有多个目标需要同时被求解时,本发明设计了多目标量子磷虾群机制来解决多无人机作战任务的多目标联合求解问题,通过使用非支配解排序和拥挤度计算的方法对量子磷虾的位置进行评价,使整个量子磷虾群向有较高的非支配等级和较大拥挤度的量子磷虾位置演化,能够获得更好的性能,而且得到的Pareto最优解能够支配使用单目标优化算法求得的单目标解,实现了能够为同时考虑多个目标的任务分配提供不同的分配方案,决策者可以根据实际工程问题中目标的重要程度来选择合适的任务分配方案,拓宽了已有任务分配方法的应用范围,有更广阔的应用前景。

    一种多无人机抢灾救援规划方法

    公开(公告)号:CN114995492B

    公开(公告)日:2024-11-08

    申请号:CN202210594253.0

    申请日:2022-05-27

    Abstract: 本发明公开了一种多无人机抢灾救援规划方法,步骤一、建立多无人机救援规划模型;步骤二、初始化量子北方苍鹰量子位置并设定参数;步骤三、计算量子北方苍鹰目标函数值;步骤四、根据所有量子北方苍鹰位置的目标函数值进行非支配解排序;步骤五、计算每一非支配等级中量子北方苍鹰位置拥挤度;步骤六、在猎物识别攻击阶段更新量子北方苍鹰量子位置;步骤七、在追逃阶段更新量子北方苍鹰量子位置;步骤八、判断是否达到量子北方苍鹰最大迭代次数,是则终止迭代,将非支配等级为1的量子北方苍鹰位置对应为任务分配矩阵,作为抢灾救援规划任务分配结果输出;否则令k=k+1,执行步骤四。本发明克服了容易陷入局部收敛的弊端,提升了演化机制的寻优速率。

    量子大马哈鱼洄游机制演化博弈的水下无人集群任务分配方法

    公开(公告)号:CN113095465B

    公开(公告)日:2023-10-17

    申请号:CN202110358000.9

    申请日:2021-04-01

    Abstract: 本发明提供一种量子大马哈鱼洄游机制演化博弈的水下无人集群任务分配方法,包括:建立水下无人集群任务分配模型;初始化量子熊群和人群位置;根据适应度函数计算量子熊群和人群的大马哈鱼密度;对量子熊群及人群的量子旋转角和位置进行更新;形成混合策略;判断是否到达最大迭代次数,如达到则终止迭代;如未达到,则令t=t+1,并返回步骤三继续执行;输出所得最终混合策略G、G'、#imgabs0#它们最大值所对应的策略即为收益期望最大的策略。本发明使用量子大马哈鱼洄游机制演化博弈论对水下无人集群进行任务部署分配,通过计算各部署所得到的损失比,调整部署分配方式,并通过混合策略优劣性判别所获得的混合策略的好坏,从而输出收益期望最高的部署分配方式。

    量子牧群机制自动演化PCNN的图像去噪方法

    公开(公告)号:CN112184594B

    公开(公告)日:2023-08-15

    申请号:CN202011096372.0

    申请日:2020-10-14

    Abstract: 本发明提供一种量子牧群机制自动演化PCNN的图像去噪方法,包括:根据椒盐噪声或高斯噪声的影响,得到含噪图像;对噪声污染后图像的进行强噪声滤波;计算自适应滤波窗口尺寸;建立自动演化PCNN图像滤波模型;初始化量子自私牧群的量子位置并设定参数;计算每个个体的适应值和生存价值;使用量子旋转门更新牧群领导者、牧群优势追随者、劣势追随者、牧群叛逃者以及捕食者的量子位置;判断是否达到量子牧群的最大迭代次数,是则终止迭代,返回最优参数;否则继续执行步骤六;输出牧群和捕食者的全局最优位置,并比较二者的生存价值,得出s个最优参数代入PCNN中,激活PCNN得到滤波图像并输出。本发明极大的提高了系统求解关键最优参数的效率和质量。

Patent Agency Ranking