-
公开(公告)号:CN110309909A
公开(公告)日:2019-10-08
申请号:CN201910562518.7
申请日:2019-06-26
申请人: 北京控制工程研究所
摘要: 一种高速大范围机动目标轨迹的智能实时预测方法,首先提出了学习样本建立方法;然后构建了基于改进BP神经网络的目标运动规律学习及训练机制;最后通过单步预测与滚动预测方法,实现了空天动目标高速大范围机动轨迹的智能、快速、准确预测;本发明仅需知道空天动目标的历史及当前时刻的位置数据,无需目标的运动模型,同时通过设计动量因子和采用变步长迭代策略提高了传统BP神经网络的收敛速度、减小了收敛过程中的振荡,大幅提升了轨迹预测的精度,可直接应用于各类高速、高机动目标的轨迹预测问题,具有较强的适用性,为后续针对X-37B等高超声速飞行器监视、跟踪、拦截等任务提供了理论基础和技术储备。
-
公开(公告)号:CN108995829A
公开(公告)日:2018-12-14
申请号:CN201810716502.2
申请日:2018-06-29
申请人: 北京控制工程研究所
IPC分类号: B64G1/24
摘要: 一种平台在轨标定方法,特别是一种六自由度Gough-Stewart平台在轨标定方法,通过补偿主动指向超静平台的作动器力系数,降低主动指向超静平台的作动器载荷三轴姿态耦合系数。包括步骤:根据归一化处理的载荷整体的三轴姿态、三轴主惯量,确定载荷整体的质心三轴实际受到的合力矩归一化结果;根据归一化处理的载荷质心的平动位移,归一化处理载荷质心三轴实际作用力。根据归一化处理的载荷质心的平动位移和归一化处理载荷质心三轴实际作用力,迭代计算给出作动器力系数的最优解。根据辨识的作动器力系数补偿主动指向超静作动器驱动电流,实现主动指向超静平台的载荷三轴姿态解耦,降低三轴姿态耦合系数。
-
公开(公告)号:CN108801270A
公开(公告)日:2018-11-13
申请号:CN201810588771.5
申请日:2018-06-08
申请人: 北京控制工程研究所
摘要: 一种航天器多级复合控制的超高精度姿态确定方法,步骤为:(1)建立航天器多级复合控制系统的星体‑载荷、载荷‑快反镜之间的姿态约束模型;(2)建立星体‑载荷、载荷‑快反镜之间的相对姿态四元数模型;(3)判断导星敏感器有测量值;(4)无测量值时,建立载荷姿态估计误差状态方程,采用卡尔曼滤波方法估计载荷姿态,实现载荷姿态高精度确定;(5)建立星体姿态估计误差状态方程,采用卡尔曼滤波实现星体姿态高精度确定;(6)有测量值时,采用导星敏感器的测量值qfm估计载荷视线姿态;(7)建立载荷姿态估计误差状态方程,采用卡尔曼滤波方法估计载荷姿态,实现载荷姿态高精度确定;(8)建立星体姿态估计误差状态方程。
-
公开(公告)号:CN108762285A
公开(公告)日:2018-11-06
申请号:CN201810513680.5
申请日:2018-05-25
申请人: 北京控制工程研究所
IPC分类号: G05D1/08
CPC分类号: B64G1/244
摘要: 一种航天器多级复合控制的目标姿态协同规划方法及系统,所设计的航天器多级复合控制系统包括星体一级控制系统和载荷二级控制系统。在航天器大角度敏捷机动过程中要求载荷和星体跟踪同一目标姿态。由于星体控制周期不同,需要在星体平台目标姿态已知的情况下,采用插值方法计算出载荷控制周期Δt2时间内的目标姿态。首先由星体姿态规划算法计算出下一个控制周期Δt1内的目标姿态θbr。然后,载荷在已知Δt1时间内的目标姿态θbr,采用牛顿插值方法计算出每一个Δt2时间内载荷的目标姿态θpr。在星体和载荷每个时间点目标姿态都已知的情况下,航天器多级复合控制系统采用星体和载荷两级PID控制器进行姿态控制,实现航天器光学载荷高稳定控制。
-
公开(公告)号:CN108762073A
公开(公告)日:2018-11-06
申请号:CN201810501561.8
申请日:2018-05-23
申请人: 北京控制工程研究所
CPC分类号: G05B13/042 , B64G1/24 , B64G1/244 , B64G2001/245
摘要: 一种主动指向超静平台操纵律设计方法,首先确定主动指向超静平台结构形式、构型参数以及智能挠性作动器的数目,计算主动指向超静平台转换到各个智能挠性作动器伸缩量的雅克比变换矩阵,然后计算主动指向超静平台操纵律,最后将主动指向超静平台操纵律变为各个智能挠性作动器的控制力并输出,实现主动指向超静平台对载荷的主动隔振和精确指向调节。
-
公开(公告)号:CN106096206A
公开(公告)日:2016-11-09
申请号:CN201610497871.8
申请日:2016-06-29
申请人: 北京控制工程研究所
IPC分类号: G06F17/50
摘要: 一种柔性航天器分布式执行机构和敏感器优化配置方法,包含以下步骤:在柔性航天器上选取一系列安装执行机构(例如微型控制力矩陀螺等)和敏感器(角速度计等)的候选节点;假设在候选节点上安装执行机构和敏感器,根据系统能观能控矩阵计算能控性指标和能观性指标,基于能控能观子空间计算各个执行机构和敏感器组合特性的判定指标;依据各指标值的大小选择配置节点,本发明所给出方案能够使系统中各执行机构和敏感器作用发挥到最大,而配置数量最小,精简了系统结构。该方法的通用性强,结构简单、属于国内外相关研究和应用的创新方法,具有很大的市场竞争力,弥补了相关领域实用性方案和理论研究的空白,具有很强的工程实用和理论指导意义。
-
公开(公告)号:CN117336621A
公开(公告)日:2024-01-02
申请号:CN202311063657.8
申请日:2023-08-22
申请人: 北京控制工程研究所
摘要: 本发明涉及一种在轨高精度成像相机积分时间动态调整方法,通过预装高精度数字高程模型或对成像点前后高程插值,实时计算目标点指向经纬度及对应高程数据,进一步动态计算和调整成像载荷积分时间,有效解决传统相机积分时间计算方法不适用于具有主动旋转角速度姿态控制功能和定姿态长条带推扫功能的卫星的问题。本发明能够实现在轨对地任意姿态成像中成像相机积分时间的动态求解,满足敏捷卫星沿飞行轨迹、正反双向推扫、正南正北、垂轨成像等多种成像过程中的相机积分时间计算,曝光时间控制灵活,具备自适应性。
-
公开(公告)号:CN112100733B
公开(公告)日:2023-08-29
申请号:CN202010718004.9
申请日:2020-07-23
申请人: 北京控制工程研究所
IPC分类号: G06F30/15 , G06F30/23 , G06F119/14
摘要: 本发明一种基于三超控制的主被一体挠性作动器挠性环节与作动单元一体化应力均衡方法,适用于天文观测、高分辨率对地观测等具有载荷超高精度、超高稳定度、超敏捷控制需求的领域。本发明针对具有多级协同控制的航天器,提出了一种膜簧、柔性铰与作动单元并联一体控制结构设计方法,具有振动隔离、扰振抑制和精确指向调节的功能,实现主被一体挠性作动器过发射主动段抗力学环境的分析与应力优化设计,提升作动器过发射主动段的可靠性,可应用于主动指向超静平台设计,用于实现载荷超高精度、超高稳定度、超敏捷“三超”控制性能。
-
公开(公告)号:CN111783271B
公开(公告)日:2023-08-29
申请号:CN202010393982.0
申请日:2020-05-11
申请人: 北京控制工程研究所
摘要: 一种航天器三超控制非线性校正方法,适用于天文观测、高分辨率对地观测等具有载荷超高精度确定需求的领域。具体包括(1)进行航天器三超控制系统中主动指向超静平台的无构型误差情况下的构型计算;(2)对构型误差进行分类和分解,确定各构型误差因素的影响域;(3)初步确定各类构型误差的允许范围;(4)计算作动器在轨再平衡量;(5)再次确定各类构型误差的允许范围;(6)对主动指向超静平台的构型误差引起的定姿误差进行校正,实现航天器的三超控制。本发明通过对等驱动构型、过驱动构型下超静平台简化构型的运动分析,对构型误差的影响情况进行了分析,为卫星平台定姿效果分析提供参考。
-
公开(公告)号:CN114623802B
公开(公告)日:2023-07-14
申请号:CN202210106555.9
申请日:2022-01-28
申请人: 北京控制工程研究所
摘要: 本发明公开了一种动中成像相机积分时间计算方法,包括步骤:(1)计算视场坐标系相对于轨道坐标系的坐标转换矩阵Cro和相机目标角速度在视场坐标系下的投影rωi;(2)根据Cro计算视场Z轴指向地面目标点的矢量在惯性坐标系下的投影IrZr,以及地心指向地面目标点的矢量在惯性坐标系下的投影Ire;根据Cro,rωi,IrZr,以及Ire计算地面目标点相对于相机视场的线速度在视场坐标系下的投影rve;(3)根据rve得到地面目标点相对于相机视场的线速度在焦平面坐标系的投影rfve;并根据rfve和IrZr得到相机积分时间TIr。本发明能实现姿态机动过程中相机积分时间的动态求解,满足敏捷卫星沿飞行轨迹正反双向推扫过程中成像相机积分时间计算,使动中成像过程中相机拍摄的曝光时间控制更加灵活,具备自适应性。
-
-
-
-
-
-
-
-
-