基于贝叶斯理论的光纤陀螺光源可靠性检测方法

    公开(公告)号:CN103115748B

    公开(公告)日:2015-02-18

    申请号:CN201310029558.8

    申请日:2013-01-25

    Abstract: 基于贝叶斯理论的光纤陀螺光源可靠性检测方法,本发明涉及光纤陀螺光源可靠性的检测方法。本发明是要解决光纤陀螺光源可靠性的检测方法过程中检测的时间长,准确率低,资源浪费的问题。一、对光纤陀螺用掺铒光纤光源进行结构和原理分析,明确各组成部分的工作原理;二、对光纤陀螺用掺铒光纤光源进行失效模式分析,得到掺铒光纤光源的可靠性模型;三、利用贝叶斯理论对掺铒光纤光源失效率进行估计;四、掺铒光纤光源可靠性模型参数进行估计,得到各可靠性指标;步骤五、以公式(15)、(16)和(17)为判断掺铒光纤光源是否失效的参数,即完成了基于贝叶斯理论的光纤陀螺光源可靠性检测方法。本发明应用于可靠性检测领域。

    捷联惯性导航系统快速阻尼方法

    公开(公告)号:CN102853833B

    公开(公告)日:2014-12-17

    申请号:CN201210110895.5

    申请日:2012-04-16

    Abstract: 本发明提供的是一种捷联惯性导航系统快速阻尼方法。步骤一:捷联惯导系统进行预热准备;步骤二:捷联惯导系统进行初始对准;步骤三:进行正向姿态矩阵更新;步骤四:进行正向速度更新;步骤五:进行正向位置更新;步骤六:对上述数据完成存储,进行姿态矩阵、速度、位置的重新初值赋值,进行惯导系统逆向解算;步骤七:进行逆向姿态矩阵更新;步骤八:进行逆向速度更新;步骤九:进行逆向位置更新;步骤十:重新对姿态矩阵、速度、位置进行初值赋值,并重复步骤三至步骤九。本发明充分利用捷联惯性导航系统的“数学平台”多样性的特点,引入可逆算法,最终实现了捷联惯性导航系统系统误差的快速收敛。本发明的方法可用于船用捷联惯导系统的导航误差抑制领域。

    一种捷联惯导系统零位标定的方法

    公开(公告)号:CN103234560A

    公开(公告)日:2013-08-07

    申请号:CN201310184385.7

    申请日:2013-05-17

    Abstract: 一种捷联惯导系统零位标定的方法,它涉及捷联惯导系统零位标定的方法。本发明要解决现有的零位标定方法中因被测惯性元器件的安装存在非正交误差而影响零位误差求值精度的问题。本发明方法是将惯性装置安装到三轴转台上,使转台旋转到四个指定位置,将四个不同位置的惯性元器件上由于安装误差导致感所受到的附加误差分量累加消除,从而求得惯性元器件的零位误差。本发明提出一种新的零位标定测量方法,可以有效的补偿掉安装误差所带来的影响,从而可以得到更加精确的零偏,提高系统精度。本发明方法可应用于现代武器装备的导航系统的零位标定。

    通用微机电系统计步器及计步方法

    公开(公告)号:CN103148864A

    公开(公告)日:2013-06-12

    申请号:CN201310116006.0

    申请日:2013-04-03

    Abstract: 通用微机电系统计步器及计步方法,属于电子计步技术领域。本发明是为了解决现有计步器体积大、计步精度不高且容易损坏的问题。它的MEMS三轴加速度传感器用于采集被计步者行走时的加速度,MEMS三轴加速度传感器的加速度信号通过SPI接口输入给FIR数字低通滤波模块,FIR数字低通滤波模块的滤波信号输出端连接数据处理模块的采集数据信号输入端,数据处理模块的计步信号输出端连接显示控制模块的计步控制信号输入端,显示控制模块的显示控制信号输出端连接段式液晶显示器的显示信号输入端;所述计步方法包括数据采集的步骤、峰值检测的步骤、有效轴检测的步骤和确定步伐的步骤。本发明用于计步。

    捷联惯性导航系统快速阻尼方法

    公开(公告)号:CN102853833A

    公开(公告)日:2013-01-02

    申请号:CN201210110895.5

    申请日:2012-04-16

    Abstract: 本发明提供的是一种捷联惯性导航系统快速阻尼方法。步骤一:捷联惯导系统进行预热准备;步骤二:捷联惯导系统进行初始对准;步骤三:进行正向姿态矩阵更新;步骤四:进行正向速度更新;步骤五:进行正向位置更新;步骤六:对上述数据完成存储,进行姿态矩阵、速度、位置的重新初值赋值,进行惯导系统逆向解算;步骤七:进行逆向姿态矩阵更新;步骤八:进行逆向速度更新;步骤九:进行逆向位置更新;步骤十:重新对姿态矩阵、速度、位置进行初值赋值,并重复步骤三至步骤九。本发明充分利用捷联惯性导航系统的“数学平台”多样性的特点,引入可逆算法,最终实现了捷联惯性导航系统系统误差的快速收敛。本发明的方法可用于船用捷联惯导系统的导航误差抑制领域。

    提高船用光纤陀螺捷联惯导系统定位精度的方法

    公开(公告)号:CN101706284B

    公开(公告)日:2011-11-16

    申请号:CN200910073154.2

    申请日:2009-11-09

    Abstract: 本发明提供的是提高船用光纤陀螺捷联惯导系统定位精度的方法。采集光纤陀螺和石英挠性加速度计的输出数据;计算初始的捷联矩阵,完成初始对准;根据系统的误差模型建立动基座下系统的状态方程和观测方程;对状态方程和观测方程进行离散化,建立Krein空间下的系统的卡尔曼滤波方程,把GPS接收机提供的速度信息运用到卡尔曼滤波方程中进行滤波计算;根据估计出的捷联惯导系统的纬度误差和经度误差在导航过程中进行补偿。本发明中建立的Krein空间下的卡尔曼滤波方程中的Re,i是不定的,当外辅导航设备的噪声特性发生变化时,卡尔曼滤波仍然能够准确的估计出捷联惯导系统的误差参数,对捷联惯导系统的定位误差进行补偿,提高捷联惯导系统的定位精度。

    一种船用光纤捷联惯导系统传递对准精度评估方法

    公开(公告)号:CN101261130B

    公开(公告)日:2010-12-29

    申请号:CN200810064291.5

    申请日:2008-04-15

    Abstract: 本发明提供的是一种船用光纤捷联惯导系统传递对准精度评估方法。以DGPS作为参考系统,提供载体的速度和位置信息,建立相应的误差模型,采用卡尔曼固定区域平滑的方法对传递对准结束这一时刻的对准误差进行平滑估计,确定惯导系统传递对准的精度,完成对传递对准精度的评估。本发明利用光纤捷联惯导系统的传递对准误差将在导航信息中反映出来这一原理,以DGPS作为参考系统,提供载体的速度和位置信息,建立相应的误差模型,采用卡尔曼固定区域平滑的方法对传递对准结束这一时刻的对准误差进行平滑估计,即可确定惯导系统传递对准的精度,即完成对传递对准精度的评估。

Patent Agency Ranking