-
公开(公告)号:CN113429059A
公开(公告)日:2021-09-24
申请号:CN202010205164.3
申请日:2020-03-23
Applicant: 南京理工大学
IPC: C02F9/14 , C02F103/36 , C02F101/16 , C02F101/34 , C02F101/36 , C02F101/38
Abstract: 本发明公开了一种六硝基六氮杂异伍兹烷生产废水的内电解‑碱解‑生物集成处理工艺。所述工艺先将HNIW生产废水泵入内电解工段,在零价铁还原作用下,对废水中硝基化合物进行有效降解,再进入碱性水解工段,对废水中高浓度乙酸乙酯和氯仿进行水解,然后进入混凝沉淀工段,去除废水中不溶性杂质和少量有机物,之后进入厌氧反应池,进行反硝化反应脱除COD,最后泵入曝气生物滤池处理工段,对残留的污染物进一步降解。采用本发明工艺处理HNIW生产废水后,HNIW、乙酸乙酯、氯仿全部去除,COD和TOC去除率分别为99.3%和98.9%,出水水质达到排放标准。
-
公开(公告)号:CN112410272A
公开(公告)日:2021-02-26
申请号:CN202011483951.0
申请日:2020-12-16
Applicant: 南京理工大学 , 生态环境部南京环境科学研究所
IPC: C12N1/20 , C02F3/34 , C12R1/01 , C02F101/16
Abstract: 本发明公开了一株高效降解DMF的副球菌及其应用,属于环境中有机污染物生物法处理领域。本发明以长期用于处理DMF的活性污泥为菌源,以DMF为碳源的无机盐培养基作为筛选培养基,分离纯化得到一株能高效降解DMF,同时进行反硝化脱氮的副球菌,保藏编号为CCTCC NO:M2020683。本发明的副球菌可以利用DMF作为电子供体进行缺氧反硝化脱氮反应,实现DMF的矿化降解,具有高效的有机物降解能力和反硝化能力,适用于废水中高浓度硝态氮及难降解有机污染物的去除处理。
-
公开(公告)号:CN112076723A
公开(公告)日:2020-12-15
申请号:CN202011021551.8
申请日:2020-09-25
Applicant: 南京理工大学 , 生态环境部南京环境科学研究所
IPC: B01J20/20 , B01J20/28 , B01J20/30 , C02F1/28 , C02F101/20
Abstract: 本发明公开了一种利用Fenton污泥制备重金属吸附剂的方法及应用,属于危险废物处理技术领域,包括以下步骤:1)混和水热;2)抽滤洗涤;3)烘干研磨。本发明将Fenton污泥和氨水通过一步水热法制备为磁性水热胺化碳吸附剂,并将制备得到的磁性水热碳吸附剂用于重金属废水的处理,制备过程简单便捷,用时短,易操作,由Fenton污泥制备的磁性水热碳吸附剂具有优良的重金属离子吸附性能,处理效果好,使用寿命长,性能稳定且易于回收。本发明的方法实现了危险废物Fenton污泥的资源化利用,节约了Fenton污泥的处置成本,避免了二次污染,具有实际的应用意义和广阔的市场前景。
-
公开(公告)号:CN105244510B
公开(公告)日:2017-06-27
申请号:CN201510716492.9
申请日:2015-10-29
Applicant: 南京理工大学
Abstract: 本发明公开了一种漆酶催化电化学组装聚苯胺/氧化石墨烯复合物改性电极,通过利用漆酶的催化氧化活性,改善聚苯胺和氧化石墨烯复合物的电化学合成效率,在温和的条件下对石墨毡电极进行改性而制备得到。本发明还公开了改性电极的制备方法,首先将漆酶吸附于石墨毡基底电极表面,随后配制苯胺单体和氧化石墨烯的混合电解液,最后采用三电极体系,在漆酶催化的同时利用恒电位法电聚合苯胺,形成聚苯胺/氧化石墨烯复合物附着在电极表面。改性后的电极表面粗糙度、电化学性能、电子传递能力得到提升,在生物电化学体系中应用时较传统石墨毡电极内阻减小,输出功率增大,显著提高了生物电化学体系的产电性能。
-
公开(公告)号:CN103626287B
公开(公告)日:2015-07-01
申请号:CN201310553435.4
申请日:2013-11-08
Applicant: 南京理工大学
IPC: C02F3/12 , C02F101/38
CPC classification number: Y02W10/15
Abstract: 本发明公开了一种具有吡啶降解功能的好氧颗粒污泥、培养及应用。所述污泥通过具有自絮凝特性的单一菌种(Rhizobium sp.) NJUST18培养而得。采用吡啶特效降解菌株(Rhizobium sp.) NJUST18作为接种物,采用序批式反应器(SBR)的反应器形式,利用(Rhizobium sp.) NJUST18的自絮凝特性,通过控制SBR体系运行周期、沉降时间和有机负荷等参数,促进吡啶降解颗粒污泥的形成。本发明所提供的具有吡啶降解功能的好氧颗粒污泥,可以以吡啶为唯一碳源、氮源进行生长。颗粒污泥培养成熟后,颗粒形状规则,沉降性能好(污泥指数SVI值只有25.6 mL/g),反应体系污泥浓度高(混合液挥发性悬浮固体MLVSS浓度高达4610mg/L),降解效率高(最大降解速率Vmax高达1867.4 mg l-1 h-1)。颗粒污泥培养成熟后,可在SBR体系中于7.5小时内实现4200 mg/L吡啶的完全降解。
-
公开(公告)号:CN103540544A
公开(公告)日:2014-01-29
申请号:CN201310374832.5
申请日:2013-08-23
Applicant: 南京理工大学
IPC: C12N1/20 , C12N1/02 , C02F3/34 , C12R1/41 , C02F101/38
Abstract: 本发明公开了一株可降解吡啶的根瘤杆菌、选育方法及其应用。经鉴定为根瘤杆菌(Rhizobiumsp.),命名为(Rhizobiumsp.)NJUST18,GenBank登陆号为JN106368,菌株已于2013年3月28日在中国典型培养物保藏中心(CCTCC)保藏,保藏编号为CCTCC NO:M 2013110。本发明直接采用以吡啶为唯一碳源和氮源的培养基进行吡啶降解菌的富集,并采用以吡啶为唯一碳源、氮源的筛选培养基进行分离,筛选过程迅速快捷,在该培养基上杂菌较少,减少了复筛的工作量。和其他吡啶降解菌株相比,该菌株具有高效的吡啶降解能力、很好的适应能力及耐受性能,在高浓度吡啶废水的处理中具有良好的应用前景。
-
公开(公告)号:CN114715983B
公开(公告)日:2024-05-07
申请号:CN202210477152.5
申请日:2022-05-03
Applicant: 南京理工大学
IPC: C02F1/461 , C02F1/48 , C02F101/10
Abstract: 本发明公开了一种低电流密度促进铁碳微电解深度除磷的方法。所述方法通过在铁碳微电解系统中引入电场,实现含磷废水的去除。本发明在铁碳微电解系统中引入低电流密度,能够有效地促进铁碳微电解填料中铁的氧化,提高除磷效率,同时延长铁碳微电解填料的寿命,减少损耗节约成本,实现磷酸铁盐的回收利用。
-
公开(公告)号:CN113979764B
公开(公告)日:2022-12-27
申请号:CN202111338697.X
申请日:2021-11-12
Applicant: 南京理工大学
IPC: C04B35/76 , C04B35/622 , C04B35/117 , B22F10/28 , B33Y10/00
Abstract: 本发明公开了基于增材的网格微结构陶瓷‑金属复合制品的制备方法,包括以下步骤:(a)提供含金属组分的原材料;(b)使金属原料固化形成网格微结构多孔形式的金属网格预制件;(c)提供含陶瓷组分的原材料;(e)使所述金属网格预制件与陶瓷材料致密化结合。本方法能显著缩短陶瓷‑金属制品的生产周期,降低生产成本,所制得的零件具有高韧性、高硬度的兼容性优异性能,增强了陶瓷材料的工程实用性,为制造金属增韧陶瓷制品的成形方法提供了一种新思路。
-
公开(公告)号:CN113019417B
公开(公告)日:2022-12-13
申请号:CN202110281797.7
申请日:2021-03-16
Applicant: 南京理工大学 , 江苏源理环保产业发展有限公司
IPC: B01J27/24 , B01J37/08 , C02F9/14 , C02F1/30 , C02F3/12 , C02F101/34 , C02F101/36
Abstract: 本发明公开了一种B掺杂的g‑C3N4/BiVO4光催化剂及其制备与应用。所述催化剂以B掺杂的g‑C3N4、钒酸盐以及铋盐为基础材料,经高温煅烧而成;其中,所述煅烧温度不低于400℃;且,当通过拉曼散射效应对散射光谱进行分析时,所述光催化剂在820.0±1.0cm‑1处具有峰,并且在298.2±0.5cm‑1处具有峰。基于制备的B掺杂异质结g‑C3N4/BiVO4催化剂辅助优化含卤代酚废水处理过程中菌群结构,且在光催化降解的作用下,生物膜利用光催化降解后生成的中间产物作为能量,加速生物膜成熟,系统可以实现快速启动。
-
公开(公告)号:CN114715983A
公开(公告)日:2022-07-08
申请号:CN202210477152.5
申请日:2022-05-03
Applicant: 南京理工大学
IPC: C02F1/461 , C02F1/48 , C02F101/10
Abstract: 本发明公开了一种低电流密度促进铁碳微电解深度除磷的方法。所述方法通过在铁碳微电解系统中引入电场,实现含磷废水的去除。本发明在铁碳微电解系统中引入低电流密度,能够有效地促进铁碳微电解填料中铁的氧化,提高除磷效率,同时延长铁碳微电解填料的寿命,减少损耗节约成本,实现磷酸铁盐的回收利用。
-
-
-
-
-
-
-
-
-