-
公开(公告)号:CN116522467B
公开(公告)日:2023-10-31
申请号:CN202310077074.4
申请日:2023-01-16
Applicant: 北京控制工程研究所
IPC: G06F30/15 , G06F30/27 , G06F18/23 , G06N3/0442 , G06N3/08 , G06N3/04 , G06F119/04
Abstract: 本发明涉及航空航天技术领域,特别涉及一种航天器部件寿命的预测方法和装置。其中,该方法包括:获取航天器部件的待测数据;其中,所述待测数据包括所述航天器部件的多种参数的数据;对每种参数的待测数据依次进行野值和停机数据的剔除处理,得到处理后的数据;对所述处理后的数据依次进行时域特征的提取、降维处理和归一化处理,得到所述航天器部件的目标特征;利用DBSCAN算法对所述目标特征进行聚类,以识别所述航天器部件的目标退化阶段;将目标特征输入到预先训练好的且与目标退化阶段对应的寿命预测模型中,得到航天器部件的剩余使用寿命。本发明的方案能够有效预测航天器部件的剩余使用寿命。
-
公开(公告)号:CN116860310A
公开(公告)日:2023-10-10
申请号:CN202310753072.2
申请日:2023-06-25
Applicant: 北京控制工程研究所
IPC: G06F8/70 , G06N3/0985 , G06N3/092
Abstract: 一种航天器在轨博弈智能生成开发平台,包括太空博弈场景环境开发组件、动力学模型组件、网络模型生成组件和可视化与效能评估组件,太空博弈场景环境开发组件生成环境模型,与网络模型生成组件交互,完成学习训练;动力学模型组件能够根据博弈任务和学习训练的需要,在决策层或执行层对真实场景进行模拟;网络模型生成组件对神经网络中神经元之间连接的权值进行调整,生成最优化的网络模型;可视化与效能评估组件对博弈过程进行可视化,供用户对任务的执行效能进行直观评价。本发明通过统一的接口建立标准化的任务场景与标准化的学习算法之间的桥梁,为新场景、新任务下航天器智能控制的研究提供一个标准化的开发平台,提升了研制效率。
-
公开(公告)号:CN116203926B
公开(公告)日:2023-08-04
申请号:CN202310096097.X
申请日:2023-01-18
Applicant: 北京控制工程研究所
IPC: G05B23/02
Abstract: 本发明涉及一种基于性能‑故障关系图谱的航天器故障分级诊断方法,该方法包括:对接收到的航天器控制系统数据进行数据清洗和特征提取,得到目标数据;将所述目标数据输入到预先构建好的系统级性能‑故障关系图谱、组件级性能‑故障关系图谱和外环部件级性能‑故障关系图谱中,得到第一故障诊断结果;若所述第一故障诊断结果为有故障发生,则将所述目标数据输入到预先构建好的子系统级性能‑故障关系图谱和内环部件级性能‑故障关系图谱中,得到第二故障诊断结果;对所述第一故障诊断结果和所述第二故障诊断结果进行融合,得到最终的故障诊断结果。本发明能够有效保证航天器控制系统故障诊断的统一性。
-
公开(公告)号:CN116502516A
公开(公告)日:2023-07-28
申请号:CN202310082621.8
申请日:2023-01-15
Applicant: 北京控制工程研究所
IPC: G06F30/27 , G06F30/15 , G06F18/2321 , G06N3/0442 , G06N3/08 , G06F119/04 , G06F119/02
Abstract: 本发明涉及航空航天技术领域,特别涉及一种航天器部件退化阶段的辨识方法和装置。其中,该方法包括:获取航天器部件的待测数据;其中,所述待测数据包括所述航天器部件的多种参数的数据;对每种参数的待测数据依次进行野值和停机数据的剔除处理,得到处理后的数据;对所述处理后的数据依次进行时域特征的提取和降维处理,得到所述航天器部件的目标特征;利用DBSCAN算法对所述目标特征进行聚类,以识别所述航天器部件的退化阶段。本发明的方案能够有效辨识航天器部件的退化阶段。
-
公开(公告)号:CN116089611B
公开(公告)日:2023-07-18
申请号:CN202310070255.4
申请日:2023-01-13
Applicant: 北京控制工程研究所
IPC: G06F16/35 , G06F16/36 , G06F40/295 , G06F40/30 , G06N5/04
Abstract: 本发明提供了一种基于性能‑故障关系图谱的航天器故障诊断方法及装置,方法为:将性能‑故障关系图谱作为DDPG的环境,将性能‑故障关系图谱中的实体作为状态,将性能‑故障关系图谱中的关系作为DDPG选择的动作,以根据待诊断航天器的当前状态确定性能‑故障关系图谱中相同状态的实体;根据预先针对性能‑故障关系图谱中各实体设置的状态类别,确定当前实体的状态类别是否为终止状态,若否,则根据当前实体的状态类别以及当前实体的实体向量确定所选择的最优动作,根据最优动作得到下一状态的实体,将下一状态的实体作为当前实体循环执行本步骤;若是,则终止循环,并将当前实体确定为故障原因。本方案,能够提高故障诊断的效率和精准度。
-
公开(公告)号:CN116400662A
公开(公告)日:2023-07-07
申请号:CN202310085883.X
申请日:2023-01-18
Applicant: 北京控制工程研究所
IPC: G05B23/02
Abstract: 本发明涉及一种正向推理与逆向推理相结合的故障推演方法和装置,该方法包括:根据FMEA构建航天器控制系统的性能‑故障关系图谱;其中,性能‑故障关系图谱的每个实体均包含两个状态,每个实体均具有对应的实体概率属性,实体概率属性用于描述故障原因发生的概率,性能‑故障关系图谱的每个关系均具有对应的关系概率属性,关系概率属性用于描述头实体和尾实体所处状态的概率;将性能‑故障关系图谱转变为一个联结树;计算联结树中各节点的概率值,以得到每个故障征兆最有可能发生的故障原因集合;针对每个故障原因集合,采用A‑star算法确定当前故障原因集合中最终的故障原因和故障影响路径。本发明能够提高航天器控制系统故障推演结果的准确性。
-
公开(公告)号:CN113501142B
公开(公告)日:2023-06-06
申请号:CN202110672020.3
申请日:2021-06-17
Applicant: 北京控制工程研究所
Abstract: 本发明公开了一种多层并联反馈的航天器控制系统及方法,该系统包括原子任务管理模块、并行任务管理模块、序列任务管理模块、总任务管理模块和智能人机接口模块;其中,以自主管理为核心,采用多层开放式结构,以接受从指定动作到指定目标,再到自选目标等各级别作战指令;基于并联反馈,建立层间联系,实现面向任务的更大回路的闭环控制。本发明不仅能够实现简单卫星的姿态和轨道控制能力,且能够实现在轨智能自主感知与信息处理、智能自主目标识别和自主决策打击能力。
-
公开(公告)号:CN113110535B
公开(公告)日:2023-06-06
申请号:CN202110282611.X
申请日:2021-03-16
Applicant: 北京控制工程研究所
Abstract: 本发明涉及一种多约束条件下航天器姿态控制方法,可应用于基于固体发动机进行姿态控制的航天器姿态控制律实现过程。首先,确定用于姿态控制的固体发动机及所在阵列在航天器本体坐标系中的安装坐标;其次,根据各个轴的姿态误差计算出所需的控制冲量矩;之后,根据固体发动机所能提供冲量固定的方向,判断应点火的固体发动机阵列;最终,通过遍历法选取应点火的固体发动机。本发明方法充分利用了固体发动机的优势,在控制律实现过程中考虑了固体发动机的特点和约束,结合实际情况给出了可行的姿态控制方法。
-
公开(公告)号:CN113465570B
公开(公告)日:2023-05-12
申请号:CN202110674031.5
申请日:2021-06-17
Applicant: 北京控制工程研究所
IPC: G01C1/00
Abstract: 本发明公开了一种基于高精度IMU的气浮台初始对准方法及系统,其中,该方法包括如下步骤:定义坐标系;根据地球自转角速度和气浮台所处地理经纬度得到惯性坐标系到东北天系的姿态变换矩阵;根据陀螺传感输出四元数得到本体系到基座惯性坐标系的姿态变换矩阵;根据双矢量定姿原理得到基座惯性坐标系到惯性坐标系的姿态变换矩阵;根据惯性坐标系到东北天系的姿态变换矩阵、本体系到基座惯性坐标系的姿态变换矩阵和基座惯性坐标系到惯性坐标系的姿态变换矩阵得到本体坐标系到东北坐标系的姿态变换矩阵;根据本体坐标系到东北坐标系的姿态变换矩阵得到陀螺的输出和加速度计的输出。本发明能够实现气浮台本体系相对基准系初始姿态的确定。
-
公开(公告)号:CN113359431B
公开(公告)日:2023-05-12
申请号:CN202110674028.3
申请日:2021-06-17
Applicant: 北京控制工程研究所
IPC: G05B13/02
Abstract: 本发明涉及一种针对航天器挠性振动的在线辨识与抑制方法,属于航天器姿态控制领域;设定系统采样周期为h,时间序列记为t1,t2,…,tk,…;输出挠性振动模态的一阶频率的角频率ω0、时间间隔ΔT前端点的幅值X1(ω0)和时间间隔ΔT后端点的幅值X2(ω0);利用X1(ω0),X2(ω0),ΔT和ω0计算模态阻尼比ζ0;设置陷阱滤波传递函数Gf(s);设计二维模糊逻辑系统,通过二维模糊逻辑系统对陷阱滤波传递函数Gf(s)中的陷阱宽度因子λ进行在线自主调整,从而改善陷阱滤波传递函数的滤波效果,提升航天器挠性振动的抑制能力;本发明提出的方法计算量不大,实用性较好,智能化程度较高,可应用于各类挠性航天器上。
-
-
-
-
-
-
-
-
-