-
公开(公告)号:CN108645867A
公开(公告)日:2018-10-12
申请号:CN201810520557.6
申请日:2018-05-25
Applicant: 哈尔滨工业大学
IPC: G01N21/88
Abstract: 大口径光学晶体表面微缺陷的快速寻位与批量检测方法,属于光学工程领域。本发明为了解决大口径光学晶体表面微缺陷的批量、快速和精确检测的难题而提出的。本方法首先采用“连续运动采集”的光栅扫描方式对整块晶体元件完整扫描;然后,通过开发图像采集程序并建立其与数控运动程序的通讯,实现根据晶体实时扫描位置来采集图像的功能;基于图像处理算法实现对采集图像中缺陷点轮廓位置的椭圆拟合,获得单张图片中缺陷点数量、位置、尺寸等信息;最后,开发缺陷点自动检测程序,建立基于Microsoft Access微缺陷信息的数据库,以实现对采集图像的批量检测和缺陷点信息的保存、更新。本发明还为大口径晶体元件表面微缺陷的修复和控制提供详细的参数依据。
-
公开(公告)号:CN107389688A
公开(公告)日:2017-11-24
申请号:CN201710600243.2
申请日:2017-07-21
Applicant: 中国工程物理研究院激光聚变研究中心 , 哈尔滨工业大学
IPC: G01N21/88 , G01N21/95 , G01S11/12 , B23K26/00 , B23K26/354
Abstract: 本发明公开了一种大口径熔石英光学元件表面微缺陷多工位集成修复方法,将紫外激光预处理系统、显微检测系统和二氧化碳激光修复系统集中安装在多自由度熔石英光学元件定位平台上,实现三工位集成。对熔石英光学元件安装定位后,采用紫外激光光斑对光学元件表面进行全口径逐行往复式扫描预处理;然后利用显微检测系统对熔石英光学元件表面微缺陷进行全口径暗场扫描检测;最后选定需要修复的微缺陷兴趣点,通过CO2红外激光系统对光学元件表面微缺陷进行局部单点融熔修复,从而完成熔石英光学元件表面微缺陷的多工位集成修复,该工艺方法实现多工位集成,节约了各个工位的装夹时间至少150分钟,提高了微缺陷修复的效率。
-
公开(公告)号:CN105181601B
公开(公告)日:2017-11-17
申请号:CN201510556941.8
申请日:2015-09-02
Applicant: 哈尔滨工业大学 , 中国工程物理研究院激光聚变研究中心
Abstract: 大口径曲面光学元件微缺陷修复用可微调显微检测装置,涉及一种曲面微缺陷检测装置。解决了大口径光学元件表面微缺陷的快速识别的定位精确度差的问题。本发明的暗场检测单元对熔石英光学元件曲面上的所有缺陷进行全口径扫描,并对扫描的微缺陷图像进行处理,确定微缺陷点的尺寸以及在光学元件表面上的坐标位置;明场监测单元对暗场检测单元处理后的微缺陷点进行实时监测,以观察缺陷点的实际尺寸大小;光谱共焦测距单元通过测量该可微调显微监测装置与曲面光学元件表面之间的距离,对表面上任意一微缺陷点进行Z向的精确定位。本发明适用性于学元件微缺陷修复用使用。
-
公开(公告)号:CN105181600B
公开(公告)日:2017-11-17
申请号:CN201510556896.6
申请日:2015-09-02
Applicant: 哈尔滨工业大学 , 中国工程物理研究院激光聚变研究中心
Abstract: 一种大口径曲面光学元件表面微缺陷的检测与激光修复装置,涉及一种光学元件表面微缺陷的检测与激光修复装置。解决了对大口径融石英光学元件的微缺陷检测速度慢和定位精确度底的问题。本发明的可微调显微检测单元、二维大行程快速移动装置、Z轴运动装置和激光组件均设置在承载台上,承载台的上表面沿X轴方向设有凹槽,二维大行程快速移动装置设置在承载台凹槽内,可微调显微检测单元和激光组件均设置于Z轴运动装置的平台上,其轴线方向均垂直于二维大行程快速移动装置的侧面。本发明适用于大口径曲面光学元件表面微缺陷的检测与激光修复使用。
-
公开(公告)号:CN105759389A
公开(公告)日:2016-07-13
申请号:CN201610231486.9
申请日:2016-04-14
Applicant: 哈尔滨工业大学
IPC: G02B7/00
Abstract: 具有平衡装置的大负载单端驱动移动平台,涉及一种大负载单端驱动移动平台。解决了现有单侧驱动易造成机构偏载,上升和下降过程中机构形变不同,影响设备的运行精度或安装过程中误差过大,会导致元件卡死在两侧导轨之间,造成设备损坏的问题。本发明的两个气缸结构的浮动接头的下端固定在承载框体的下边框的上表面,且浮动接头的上端与低摩擦力气缸杆螺纹连接,低摩擦力气缸杆在低摩擦力气缸体内做活塞运动,低摩擦力气缸体顶端穿过龙门横板与双耳环座固定链接,双耳环结构安装在龙门肋板上,双耳环结构(11)与双耳环座(12)之间通过气缸铰链轴铰接,实现相对旋转。本发明适用于作为单端驱动形成装置使用。
-
公开(公告)号:CN115169198B
公开(公告)日:2025-04-29
申请号:CN202210905554.0
申请日:2022-07-29
Applicant: 哈尔滨工业大学
IPC: G06F30/23 , G16C60/00 , G06F111/04 , G06F113/26 , G06F119/14
Abstract: 本发明提供了一种基于ABAQUS的各向异性KDP功能晶体材料微铣削加工过程的三维仿真方法,属于光学元件计算机辅助设计与加工技术领域。为解决现有的仿真方法无法从三个维度精确预测各向异性KDP材料微铣削加工过程的问题。包括:步骤一、构建加工过程的三维装配模型;步骤二、设置分析步时间总长和半自动质量缩放以及设置输出变量;步骤三、构建工件的各向异性本构模型;步骤四、对铣刀和KDP晶体元件分别进行网格划分;步骤五、模拟铣刀与元件的接触状态;步骤六、约束模型自由度并设置加工工艺参数;步骤七、对模型进行求解,重复步骤二至七的操作,至仿真结果收敛;步骤八、输出仿真结果。本发明方法能够全方位精确描述向异性KDP晶体材料微铣削加工过程。
-
公开(公告)号:CN118447201A
公开(公告)日:2024-08-06
申请号:CN202410534147.2
申请日:2024-04-30
Applicant: 哈尔滨工业大学
Abstract: 本发明一种用于KDP晶体DPN水溶修复形貌演变模拟的表面微纳缺陷三维形貌演变模拟方法,涉及微纳制造领域,为解决现有方法无法将KDP元件表面微纳缺陷三维形貌转化为DPN水溶修复形貌演变模拟模型初始值进行微纳缺陷三维形貌演变模拟的问题。包括:步骤一、采集KDP光学元件表面微纳缺陷三维云图;步骤二、对三维云图进行预处理,转换导出为一维数组;步骤三、对一维数组进行零点偏移和归一化缩放;步骤四、对一维数组进行二维像素矩阵映射变换;步骤五、重写为灰度图像后导入模拟模型,对每个二维像素点进行坐标映射;步骤六、进行反演变换实现三维云图的重建;步骤七、进行初始化并求解,得到以缺陷实际形貌为初始值的DPN水溶修复形貌演变过程。
-
公开(公告)号:CN118445941A
公开(公告)日:2024-08-06
申请号:CN202410534143.4
申请日:2024-04-30
Applicant: 哈尔滨工业大学
IPC: G06F30/17 , G06F30/28 , G16C10/00 , G16C60/00 , G06F119/08 , G06F111/14 , G06F111/04 , G06F119/14
Abstract: 本发明提供一种基于动网格‑流体‑相场耦合的DPN纳米级水半月板动态特性模拟方法,涉及微纳制造技术领域,为解决现有方法的模型空间和时间尺度小,未考虑空气和水的材料属性以及AFM探针的运动参数等因素,以及AFM探针仅能沿垂直于基体表面方向移动等问题。包括:步骤一、构建水半月板全范围计算模型,求解DPN水半月动态特性分析初始条件;步骤二、构建DPN水半月板动态特性分析几何模型;步骤三、对几何模型进行收敛性增强处理,保证网格质量;步骤四、设定分析模型初始值,赋边界条件,对模型进行静态弛豫处理;步骤五、将几何模型划分为指定运动域和自由变形域,设定AFM探针运动参数和动网格边界条件,对模型进行瞬态求解,获得DPN水半月板动态特性。
-
公开(公告)号:CN114675611B
公开(公告)日:2024-07-19
申请号:CN202210366496.9
申请日:2022-04-08
Applicant: 哈尔滨工业大学
IPC: G05B19/418
Abstract: 一种针对悬臂梁状弱刚度微车刀外圆车槽的车削工艺参数优化方法,涉及超精密弱刚度微槽车削领域,为解决现有技术中没有针对悬臂梁状弱刚度微车刀挠度变形引起的加工误差进行优化的问题。具体过程为:步骤一、分析出影响刀具挠度变形的切削力分量,建立该切削力分量的函数模型;步骤二、根据切削力分量函数模型建立挠度变形的函数模型;步骤三、根据挠度变形函数模型建立实际进给距离的函数模型;步骤四、根据实际进给距离函数模型代入挠度变形的函数模型中进行循环计算,求得最终实际进给距离的函数模型;步骤五、根据最终实际进给距离的函数模型,建立槽深误差的函数模型,通过分析各参数对槽深误差的影响规律对各参数进行优选。
-
公开(公告)号:CN115326804B
公开(公告)日:2024-05-14
申请号:CN202211068372.9
申请日:2022-09-02
Applicant: 哈尔滨工业大学
Abstract: 本发明提供了一种熔石英元件表面损伤发起与损伤增长自动评价装置和方法,涉及光学元件技术领域,为解决现有技术在激光损伤阈值以及损伤增长测试过程中,需要频繁地装夹和拆卸熔石英元件对损伤进行检测,不但检测效率低,且重复安装元件的将导致误差的问题。该装置包括:X轴运动模组、Y轴运动模组、光学元件夹具组、相机及光源组和基座;X轴运动模组安装在基座上,Y轴运动模组垂直安装于X轴运动模组上,光学元件夹具组安装于Y轴运动模组上,相机及光源组的相机和背光源安装于X轴运动模组的相对两侧,相机、环形光源与背光源位于同一轴线上。本发明可实现熔石英元件表面损伤发起与损伤增长评价全流程自动化,具有较高的准确度。
-
-
-
-
-
-
-
-
-