-
公开(公告)号:CN115248203A
公开(公告)日:2022-10-28
申请号:CN202210520009.X
申请日:2022-05-13
Applicant: 哈尔滨工业大学(威海) , 威海云山科技有限公司
Abstract: 一种用于工业染料检测的复合SERS基底的绿色制备方法,它属于无机纳米材料制备技术领域。它要解决现有检测工业染料的贵金属SERS基底荧光性强、生物相容性差、价格昂贵、易氧化的问题。方法:一、Ti3C2Tx Mxene粉体与氯化铁溶液混合制备多层状Ti3C2TxMxene;二、多层状Ti3C2Tx Mxene与氯金酸溶液混合制备手风琴状Ti3C2Tx Mxene,分散后滴加至硅片上自然晾干。本发明采用绿色、简单的方法制备了用于工业染料检测的金纳米粒子修饰的Ti3C2Tx Mxene复合SERS基底材料,避免了氟化物的使用,同时保持了优异的SERS性能。本发明制备所得产品作为无机纳米材料使用。
-
公开(公告)号:CN113249092B
公开(公告)日:2022-10-14
申请号:CN202110593792.8
申请日:2021-05-28
Applicant: 哈尔滨工业大学(威海) , 威海云山科技有限公司
Abstract: 本发明涉及吸波材料技术领域,尤其涉及一种金属有机框架配合物复合吸波粉体的制备方法。具体是通过溶剂热法将铁盐、钴盐和有机配体与有机溶剂反应生成Co/Fe‑MOFs(钴铁金属有机框架配合物),并通过硅溶胶加热包覆的过程将所获得的Co/Fe‑MOFs的吸波粉体表面再次包覆一层SiO2防锈壳层,获得SiO2包覆的Co/Fe‑MOFs复合吸波粉体,最后经过高温反应烧结获得微观形貌调控后的Co/Fe‑MOFs@SiO2复合吸波粉体。本发明通过介电隔绝不仅有效抑制了涡流效应,还具有抗氧化耐腐蚀,耐高温的优点,使得吸波材料具有了更广泛的应用可能。
-
公开(公告)号:CN112299854B
公开(公告)日:2022-02-01
申请号:CN202011217790.0
申请日:2020-11-04
Applicant: 哈尔滨工业大学(威海) , 烟台鲁航炭材料科技有限公司
IPC: C04B35/577 , C04B35/80 , C04B35/622
Abstract: 本发明涉及一种低成本耐高温碳陶复合材料及制备方法,所述的碳陶复合材料为对碳陶复合材料增强体使用先驱体进行增密处理得到,所述的先驱体原料包括正硅酸乙酯、铝粉、无水乙醇、三甲基二氯硅烷和碱性硅溶胶。将装满先驱体的多针头注射器均匀插到碳陶复合材料增强体表面,多针头注射器和碳陶复合材料增强体对称布置到离心筒四周,启动离心筒,多针头注射器中的先驱体在离心力作用下均匀从碳陶复合材料增强体上表面渗入下表面,加热作用下多驱体挥发水分,将固含量留在碳陶复合材料增强体内,形成致密化并干燥处理后的碳陶复合材料生坯基体,然后再经过烧结得到碳陶复合材料。所述的碳陶复合材料耐高温,而且制备成本低。
-
公开(公告)号:CN113524741A
公开(公告)日:2021-10-22
申请号:CN202110864256.7
申请日:2021-07-29
Applicant: 哈尔滨工业大学(威海)
Abstract: 本发明提供了一种竖直排列的氮化硼纳米片高分子复合材料导热薄片及其制备方法,所述复合材料以片状结构的氮化硼纳米片为填料,添加到高分子基体中,通过搅拌、流延工艺形成具有水平排列的氮化硼纳米片高分子复合膜,再将氮化硼纳米片高分子复合膜经过堆叠、热压熔合和纱线切割工艺制备竖直排列的氮化硼纳米片高分子复合材料导热薄片。因为氮化硼纳米片在高分子基体中呈现竖直排列特征,减小了界面热阻,提高了材料的导热系数,且通过纱线切割工艺可以得到厚度在0.05‑0.40 mm的复合材料导热薄片,热阻更小,利于传热。该方法简单、可靠、操作性强,可应用于氮化硼纳米片与众多体系高分子复合材料的制备。本发明提供的方法所制备的氮化硼纳米片复合材料导热薄片可广泛应用于电子产品的热管理中。
-
公开(公告)号:CN111636194A
公开(公告)日:2020-09-08
申请号:CN202010336714.5
申请日:2020-04-26
Applicant: 哈尔滨工业大学(威海) , 山东兰海新材料科技有限公司
IPC: D06M11/74 , D06M13/50 , D06M15/09 , D06M13/256 , D06M15/41 , D06M101/40
Abstract: 一种碳碳/碳陶复合材料用碳纤维编织体上浆剂及其制备方法,涉及碳碳/碳陶复合材料编织体上浆剂及其制备方法,原料包括工业皂粉、石墨烯干粉、硅烷偶联剂、羧甲基纤维素钠、十二烷基磺酸钠、水溶性酚醛树脂、去离子水。制备方法如下:按重量份配比选取上述原料;将工业皂粉、硅烷偶联剂和去离子水置加入容器中搅拌均匀;将十二烷基磺酸钠加入上述容器中搅拌均匀;将羧甲基纤维素钠(CMC)加入上述容器内搅拌均匀;将石墨烯干粉加入上述容器内搅拌均匀;将水溶性酚醛树脂加入上述容器内搅拌均匀;将上述容器置于50-70℃水中水浴15-30分钟,水浴过程需持续搅拌;制成品。具有良好耐磨性、耐高温,低摩擦系数、环境友好型等优点。
-
公开(公告)号:CN106947359B
公开(公告)日:2020-05-08
申请号:CN201710206064.0
申请日:2017-03-31
Applicant: 哈尔滨工业大学(威海)
IPC: C09D163/00 , C09D5/02 , C08G59/14
Abstract: 本发明涉及一种水性环氧胶体的制备方法,属涂料化工领域。其原料包括:环氧树脂20~30 wt%、环氧稀释剂20~30 wt%、二乙醇胺5~10 wt%、乙酸1~5 wt%、去离子水30~40 wt%。所述水性胶体制备步骤如下:先将环氧树脂与活性稀释剂稀释至均一透明,然后控制温度80~85℃滴加二乙醇胺,恒温反应1~1.5h,加入乙酸中和,在搅拌状态下滴加去离子水即可得到透明均一的水性环氧胶体。与传统化学改性法相比,本发明操作简单,反应温度低、时间短,几乎没有VOCs的排放。胶体颗粒尺寸达到纳米级、稳定性好、亲水性好、粘度低。
-
公开(公告)号:CN106957409B
公开(公告)日:2020-04-10
申请号:CN201710222566.2
申请日:2017-04-07
Applicant: 哈尔滨工业大学(威海)
IPC: C08G59/64 , C08G59/56 , C08G59/20 , C09D163/00
Abstract: 本发明涉及一种水性环氧树脂固化剂,属涂料化工领域。该固化剂采用芳香族对位取代的二胺作为主要胺类化合物,其成分及质量比如下:对苯二胺类化合物20~30 wt%、环氧树脂10%~15 wt%、环氧活性稀释剂AGE 5~10 wt%、二乙醇胺2~3 wt%、乙酸10~15 wt%、去离子水40~50 wt%。所述水性环氧固化剂首先将二乙醇胺与环氧树脂开环制得改性环氧树脂,而后将改性环氧树脂与对苯二胺类化合物加成,中和之后滴加去离子水分散制得。本发明操作简单,反应温度低、反应过程易控制,所得的固化剂无VOCs的排放、粘度低,固化时间短。
-
公开(公告)号:CN110819971A
公开(公告)日:2020-02-21
申请号:CN201911124691.5
申请日:2019-11-18
Applicant: 哈尔滨工业大学(威海) , 威海云山科技有限公司
Abstract: 本发明提出一种基于SiO2包覆的羰基铁粉复合吸波材料的制备方法,包括S1、在去离子水中加入羰基铁粉形成混合物,羰基铁粉的质量百分比为1~5%,将混合物超声1~2min得到体系A;S2、在无水乙醇中加入正硅酸乙酯和硅烷偶联剂形成混合物,正硅酸乙酯和硅烷偶联剂的质量百分比均为0.5%~2%,得到体系B;S3、将两体系混合后加入促进正硅酸乙酯水解的催化剂形成混合液,催化剂的质量百分比为0.2%~1%,将混合液在磁性搅拌子搅拌下恒温水浴加热2~4h,水浴温度40~60℃;S4、将混合液中上层清液倒出,用去离子水多次洗涤下层沉淀物,并不断利用磁性搅拌子的磁性富集羰基铁粉;S5、将S4所得产物在50~70℃条件下真空干燥18~24h,再研磨4~6min即可。通过上述方法制备的吸波材料具有优良的吸波性能。
-
公开(公告)号:CN110778415A
公开(公告)日:2020-02-11
申请号:CN201911039526.X
申请日:2019-10-29
Applicant: 哈尔滨工业大学(威海)
Abstract: 一种航空发动机,涉及重型载荷无人机发动机领域,设有外壳体,外壳体的内壁上设有环形燃烧槽,外壳体内设有喷出口调节筒,喷出口调节筒与环形燃烧槽围成环形燃烧腔,喷出口调节筒内设有加速喷射管,加速喷射管前端部与喷出口调节筒前端部内壁固定连接;外壳体上设有与加速喷射管前端相对的喷出口挡环,环形燃烧槽前端内壁和喷出口挡环后侧壁上设有弧形导流壁,加速喷射管前端位于弧形导流壁后侧内,二者间设有环形喷出口,外壳体上设有空气吸入口,外壳体上设有燃料入口、气体入口和点火口;喷出口调节筒后部螺纹连接有定位法兰,定位法兰经螺栓与外壳体相连。本发明具有结构简单、燃烧效率高、重量轻、维护成本低等优点。
-
公开(公告)号:CN106735299B
公开(公告)日:2019-03-05
申请号:CN201611182245.6
申请日:2016-12-20
Applicant: 哈尔滨工业大学(威海)
Abstract: 本发明涉及石墨烯微片表面改性工艺技术领域,具体的说是一种石墨烯微片负载纳米镍复合粉体的制备方法,其包括:将石墨烯微片浸泡在氧化性酸溶液中,然后将石墨烯微片冲洗取出,使用一种含有还原剂的镍盐溶液,在机械搅拌和超声震荡共同作用下,使酸化后石墨烯微片分散在镍盐溶液中,再把以上混有石墨烯微片镍溶液置于反应釜中,在200~400℃环境下作用2‑24小时,镍纳米颗粒负载于石墨烯微片上,降温到室温下打开罐体,取出石墨烯/镍复合粉体,40‑60℃烘干即可,本发明工艺简单,易于操作,有利于工业化生产。
-
-
-
-
-
-
-
-
-