一种区块链多模态数据异常检测方法

    公开(公告)号:CN118468346A

    公开(公告)日:2024-08-09

    申请号:CN202410935056.X

    申请日:2024-07-12

    摘要: 本发明属于区块链数据检测技术领域,涉及一种区块链多模态数据异常检测方法;包括:获取包括不同模态数据集的训练集;利用L21范数对各个模态数据集的投影矩阵进行稀疏,构建目标稀疏投影矩阵项;基于同一模态数据集的数据样本映射后近邻相似图矩阵不变性,构建第一多模态图正则项;基于不同模态数据集的数据样本映射后语义相似矩阵不变性,构建第二多模态图正则项;基于第一多模态图正则项和第二多模态图正则项得到目标多模态图正则项;构建超球目标函数和超球约束函数,并对超球目标函数和超球约束函数求解,得到超球半径、超球中心和各个模态数据集的投影矩阵,从而对区块链中的多模态数据进行检测,提高区块链数据的准确性和系统安全性。

    一种基于注意力和对比原型的小样本视觉提示微调方法

    公开(公告)号:CN118196831A

    公开(公告)日:2024-06-14

    申请号:CN202410198457.1

    申请日:2024-02-22

    申请人: 江南大学

    摘要: 本发明涉及计算机视觉技术领域,尤其是指一种基于注意力和对比原型的小样本视觉提示微调方法、装置及计算机可读存储介质。本发明所述方法,在视觉自注意力模型中嵌入层和第一个注意力层之间连接提示模块,所述提示模块由多个连续嵌入组成,并在视觉自注意力模型的每个注意力层中分别增加前缀模块,利用前缀模块的键值对分别重组注意力层中多头自注意力的键值对;将注意力原型作为提示模块的初始化参数,冻结经过预训练的视觉自注意力模型的骨干网络参数,仅对提示模块和前缀模块的参数进行更新。本发明不仅降低了微调的参数量,减少了存储需求和算力需求,而且减轻了过拟合风险,保证了小样本任务的泛化性能。

    一种基于异常检测的小样本医学图像分割方法

    公开(公告)号:CN117726815A

    公开(公告)日:2024-03-19

    申请号:CN202311758269.1

    申请日:2023-12-19

    申请人: 江南大学

    摘要: 本申请公开了一种基于异常检测的小样本医学图像分割方法,涉及医学技术领域,该方法利用特征提取模块对输入的支持切片图像提取支持特征以及对输入的查询切片图像提取查询特征,利用原型提取模块基于支持特征及对应的超像素标签提取得到各个前景类别的前景原型,利用异常检测模块基于查询特征和各个前景类别的前景原型得到分割结果,继而结合对应的超像素标签计算得到损失函数进行模型训练用于小样本医学图像分割。该方法引入异常检测模块使得网络模型能够更好地适应医学图像的特殊性,从而更好地应对不同器官、不同密度和不同结构的医学图像分割,能够有效提高小样本医学图像分割的性能和可靠性。

    多中心小样本场景下目标预测模型构建方法和预测方法

    公开(公告)号:CN116596161B

    公开(公告)日:2023-10-13

    申请号:CN202310807852.0

    申请日:2023-07-04

    申请人: 江南大学

    摘要: 本发明涉及一种多中心小样本场景下目标预测模型构建方法和预测方法。通过结合迁移学习的思想直接用已训练节点的知识对新节点的训练集进行预测,借助预测错误样本体现新节点与已训练节点的差异,将其作为补充知识,以此快速获取新节点的模型知识,避免每次都对新节点从头训练;最后使用岭回归方法实现增量式子分类器的并行集成,大大节省了部署时间和成本。通过共享历史知识和知识丢弃机制保证模型的泛化性,在足够的共享知识的支持下,对于小样本量的节点也可以取得较好的分类效果。基于具有高度可解释性的零阶TSK模糊系统进行改进,所有的模型参数都可以通过规则的形式体现,有着高度的语义透明性,在实际应用中更能帮助用户分析和理解数据。

    一种基于元学习的深度模糊决策系统

    公开(公告)号:CN114628023A

    公开(公告)日:2022-06-14

    申请号:CN202210095777.5

    申请日:2022-01-26

    申请人: 江南大学

    摘要: 本发明公开了一种基于元学习的深度模糊决策系统,包括参数设置模块、数据空间划分模块、数据处理模块、参数调控模块和循坏训练模块;参数设置模块用于对决策系统中的参数进行设置;数据空间划分模块用于通过FCM或者其他划分技术对训练数据的输入空间进行划分;数据处理模块将数据空间划分模块中的数据转化为相应线性回归模型问题来求解后件参数和输出结果;参数调控模块用于设置初始化参数i并进行随机选择;循环训练模块用于针对所述参数设置模块中的当前图层指示器j进行判断并得出最终输出结果;本发明有效排除不需要的噪声并通过遗忘和变异使有效的特征得到充分的训练。

    基于人工智能的医疗大数据处理系统及计算机可读存储介质

    公开(公告)号:CN109994197A

    公开(公告)日:2019-07-09

    申请号:CN201910264984.7

    申请日:2019-04-03

    申请人: 江南大学

    IPC分类号: G16H40/67 G16H10/00

    摘要: 本发明公开了一种基于人工智能的医疗大数据处理系统,该医疗大数据处理系统包括:用于由移动终端收集用户的医疗相关信息的单元;用于由移动终端确定通过第一无线接入技术向医疗大数据处理平台发送所收集的医疗相关信息的单元;用于如果在确定通过第一无线接入技术向医疗大数据处理平台发送所收集的医疗相关信息之后,由移动终端接收到医疗大数据处理平台发送的第一测量报告请求,则移动终端执行第一处理的单元;用于由医疗大数据处理平台基于第一测量报告向移动终端发送医疗相关信息请求消息的单元;以及用于响应于接收到医疗相关信息请求消息,由移动终端通过第一无线接入技术向医疗大数据处理平台发送所收集的医疗相关信息的单元。

    基于多视角模糊智能系统的手持式智能人工雾化器

    公开(公告)号:CN107693909A

    公开(公告)日:2018-02-16

    申请号:CN201711013297.5

    申请日:2017-10-25

    申请人: 江南大学

    IPC分类号: A61M11/00 A61M31/00

    摘要: 本发明公开了基于多视角模糊智能系统的手持式智能人工雾化器,包括手持式雾化底座、可拆卸式雾化液筒体、雾化喷嘴和可拆卸式安抚挂件;可拆卸式雾化液筒体上还连接有雾化面罩,雾化面罩包括硬质罩体、面部托板和托架支撑杆,其中面部托板通过若干托架支撑杆连接在硬质罩体的末端,而且托架支撑杆的外侧还包裹有透气罩;雾化面罩的面部托板的周边均匀地布置有至少四个微型压力传感器,本发明的雾化器的多视角模糊智能系统通过其中心控制装置获取这些微型压力传感器的压力数值、使用者的呼吸频率,实时控制雾化面罩的雾化电机的工作电压,最终控制雾化喷嘴的雾化大小,训练患者的呼吸习惯,为该儿童提供合理的雾化速率,具有较高的舒适性能。

    一种具备迁移学习能力的脑电信号识别模糊系统方法

    公开(公告)号:CN104523268B

    公开(公告)日:2017-02-22

    申请号:CN201510024018.X

    申请日:2015-01-15

    申请人: 江南大学

    IPC分类号: A61B5/0476

    摘要: 本发明公开了一种具备迁移学习能力的脑电信号识别模糊系统方法。传统智能识别方法都假设模型的训练集和测试集服从相同的数据分布,因而仅在训练域和测试域数据服从相同分布时方可获取良好的分类性能。本发明所提方法利用迁移学习策略来帮助迁移学习环境下的癫痫脑电信号识别。基于模糊系统构建具备直推式迁移学习能力的0阶TSK型模糊系统建模技术。此技术因具备了迁移学习能力而不再局限于训练域和测试域数据分布一致的假设,允许两者之间存在一定的差异性,不仅在训练域与测试域数据分布相同的场景下保持良好的性能,也大大提高了最终所获模型在多样化的脑电信号识别问题下的识别效果。

    全表示半监督快速谱聚类的医学图像分割方法及系统

    公开(公告)号:CN103617623B

    公开(公告)日:2016-03-16

    申请号:CN201310667423.4

    申请日:2013-12-10

    申请人: 江南大学

    IPC分类号: G06T7/00

    摘要: 本发明公开了全表示半监督快速谱聚类的医学图像分割方法及系统。方法步骤包括:获取等待处理的医学图像;通过触摸屏在该医学图像中圈画;对全幅医学图像进行像素灰度、空间位置及Gabor纹理特征提取,进行特征归一化和特征降维处理;进行圈画区域参照信息的All-In-One形式表示;生成基于全表示半监督机制的图论松弛聚类模型;聚类模型二次项重新整理成新的正定矩阵;改写为约束型最小包含球形式;基于核心集最小包含球快速逼近策略估算最终解;图示化聚类指示向量决定聚类分割的实际类别数;根据类别数基于K均值算法将聚类指示分量划分成不同子集。系统包括一个FPGA模块及外接设备。本发明方法及系统,操作简单,实时性好,准确性高。

    全表示半监督快速谱聚类的医学图像分割方法及系统

    公开(公告)号:CN103617623A

    公开(公告)日:2014-03-05

    申请号:CN201310667423.4

    申请日:2013-12-10

    申请人: 江南大学

    IPC分类号: G06T7/00

    摘要: 本发明公开了全表示半监督快速谱聚类的医学图像分割方法及系统。方法步骤包括:获取等待处理的医学图像;通过触摸屏在该医学图像中圈画;对全幅医学图像进行像素灰度、空间位置及Gabor纹理特征提取,进行特征归一化和特征降维处理;进行圈画区域参照信息的All-In-One形式表示;生成基于全表示半监督机制的图论松弛聚类模型;聚类模型二次项重新整理成新的正定矩阵;改写为约束型最小包含球形式;基于核心集最小包含球快速逼近策略估算最终解;图示化聚类指示向量决定聚类分割的实际类别数;根据类别数基于K均值算法将聚类指示分量划分成不同子集。系统包括一个FPGA模块及外接设备。本发明方法及系统,操作简单,实时性好,准确性高。