-
公开(公告)号:CN118918445A
公开(公告)日:2024-11-08
申请号:CN202411405238.2
申请日:2024-10-10
IPC分类号: G06V10/82 , G06N3/0455 , G06N3/09 , G06V10/22 , G06V10/42 , G06V10/44 , G06V10/774 , G06V10/80
摘要: 本发明涉及异常决策技术领域,公开了一种基于多尺度特征融合差分的轻量化智能异常决策方法,包括选取多个正常图像作为记忆样本;获取待检测图像;获取每个记忆样本与待检测图像的多个具有不同分辨率的阶段特征,组成每个记忆样本的样本存储信息与待检测图像的实时存储信息;计算实时存储信息与每个样本存储信息之间的欧几里得距离,获取距离最小的作为目标样本存储信息与目标记忆样本;获取目标记忆样本与待检测图像在各个分辨率下的x轴、y轴卷积阶段特征,计算各个分辨率下目标记忆样本与待检测图像之间的差分信息;获取基于金字塔结构的多尺度特征差分中每一层的差分输出,进行通道拼接后,输入解码器中,获取待检测图像中的缺陷定位结果。
-
公开(公告)号:CN118797448A
公开(公告)日:2024-10-18
申请号:CN202411284257.4
申请日:2024-09-13
IPC分类号: G06F18/241 , G06N3/0455 , G06N3/0464 , G06N3/096 , G06F18/10 , G06F18/2131 , G06F123/02
摘要: 本发明涉及机器故障诊断技术领域,公开了一种基于迁移学习的多尺度智能决策方法,包括:获取源域与目标域中的机械故障振动时序长信号,构建源域训练集与目标域训练集;在源域训练集中,对时序分信号进行预处理后,提取时域特征与频域特征,并映射为低维时域特征与低维频域特征;计算特征之间的互相关矩阵,构建互相关损失函数,来训练编码器,获取源域优化时域信号编码器,并迁移至目标域,与初始分类器,组成初始多尺度智能决策模型;对目标域时序分信号进行预测,与其真实标签,构建交叉熵损失函数,训练获取目标多尺度智能决策模型;将实时采集的机械故障振动时序长信号,预处理后分别输入目标多尺度智能决策模型中,获取对应的故障类别。
-
公开(公告)号:CN118013647B
公开(公告)日:2024-09-10
申请号:CN202410335062.1
申请日:2024-03-22
申请人: 江南大学
摘要: 基于迁移学习的船体外形设计代理辅助优化方法,属于船型设计领域。首先,利用两种不同类型的船体形状参数表示的样本,通过实施两阶段TrAdaBoost.R2迁移学习算法构建代理模型。这两种参数表示分别基于船舶尺度系数(用作源域)和几何参数(用作目标域)。其次,我们提出了一种代理模型更新策略,定期将当前最佳估计适应度值和最大不确定性的两个CFD模拟位置分别添加到目标域,以重构替代模型。最后,采用了结合粒子迁移方案的改进量子粒子群优化(QPSO)算法作为优化器,以使其更好地适应替代模型的重构。
-
公开(公告)号:CN117852733B
公开(公告)日:2024-07-30
申请号:CN202311677616.8
申请日:2023-12-06
申请人: 江南大学
IPC分类号: G06Q10/047 , G06F18/214 , G06F17/18
摘要: 本发明公开了一种基于大规模限量弧路由问题求解的路径规划方法,属于组合优化领域。本发明首先进行了全局优化,提出了一种基于CARP问题的低成本分解优化方案,在迭代中有针对性的保留了更多优秀的分解;同时,本发明也应用于局部搜索阶段,提出了一种改进的路径构造规则,其优化了生成初始解中路径插入的部分,在路径插入的过程中考虑了车辆在接近满载时返回仓库产生过多无用花费的问题,改进之后能够更有效的进行局部搜索,进一步提升了求解质量。与现有的路径规划方法相比,本发明更细致的考虑到了CARP优化问题的细节与问题本身的特点,能够取得更低成本的解,且能够提升2‑3倍左右的稳定性。
-
公开(公告)号:CN111767882B
公开(公告)日:2024-07-19
申请号:CN202010639950.4
申请日:2020-07-06
申请人: 江南大学
IPC分类号: G06V40/10 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0464 , G06V40/20
摘要: 本发明涉及一种基于改进YOLO模型的多模态行人检测方法,属于深度学习目标检测领域。该基于改进YOLO模型的多模态行人检测算法,使用KAIST数据集中一一对应的可见光图片和红外光图片样本进行训练,得到训练好的模型,通过训练好的模型检测可见光‑红外光图片对中是否包含行人目标,该基于YOLO网络的多模态行人检测算法使用并行Darknet53作为特征提取网络,分别提取可见光模态和红外光模态的多尺度特征图,而且使用了加权特征融合层和CBAM注意力机制,使可见光特征和红外光特征图片更好的融合,再将多尺度注意力加权融合特征图依次级联并送入YOLO层中进行行人检测。
-
公开(公告)号:CN116431761B
公开(公告)日:2024-07-12
申请号:CN202310214059.X
申请日:2023-03-07
申请人: 江南大学
IPC分类号: G06F16/33 , G06F40/289 , G06F18/214
摘要: 本发明涉及一种中文上位词检索方法,包括获取待查询数据样本中的下位词,带入预设提示模板中,得到含有掩码的待填空文本作为提示;对所述提示进行分词,获取Token序列;将所述Token序列输入预设预训练语言模型中,对所述掩码进行填空,获取预设配套词汇表中每个候选词被填入掩码的logit;获取logit值最高的候选词作为所述预训练语言模型的上位词最优预测结果。本发明首次将提示调优引入中文上位词检索领域,基于任务适应性强的提示调优技术,利用一个预设的固定提示模板来训练预训练语言模型的中文上位词检索能力;通过提示模板获取提示,进而引导预训练语言模型的推理过程,利用固定的提示模板,不断约束和规范模型的输出,从而产生期望的预测结果,获取上位词。
-
公开(公告)号:CN117010991B
公开(公告)日:2024-05-03
申请号:CN202310948429.2
申请日:2023-07-31
申请人: 江南大学
IPC分类号: G06Q30/0601 , G06N3/126
摘要: 本发明公开了一种基于GPU并行改进遗传算法的高利润商品组合挖掘方法,属于数据挖掘与处理技术领域。所述方法通过将遗传算法的多个步骤选择、交叉、变异在GPU中运行。改进的初始化策略和改进的排序PEV策略同样在GPU中执行,这两个策略可以提高迭代性能。同时丰富种群的精英策略也使得较高效用的项集得到保留,以大幅提升收敛性能。而且本申请所采用的带有种群多样性改进的精英策略可以在线性时间内将优秀个体传递给下一次迭代的种群中。最后通过多组实验,从挖掘质量、运行速度、并行加速比等多个方面验证了所提出方法的优势。本申请方法针对现实数据集可以在短时间内得到有用的高效用组合以辅助销售决策。
-
公开(公告)号:CN110955702B
公开(公告)日:2024-03-29
申请号:CN201911188600.4
申请日:2019-11-28
申请人: 江南大学
IPC分类号: G06F16/2458 , G06N3/126
摘要: 本发明公开了一种基于改进遗传算法的模式数据挖掘方法,属于数据挖掘技术领域。本发明种群初始化后,包括使用如下一种以上处理:个体修复处理,邻域探索处理,种群多样性维持处理和精英处理,来挖掘HUIs。本发明方法,在四个实际数据集上的实验结果表明,与目前最先进的基于EC的HUIM算法相比,所提出的HUIM‑IGA方法在发现的HUIs数量、发现HUIs的能力和运行时间方面具有更好的性能。可应用于处理日常应用中常见的交易型等事务数据库,在发现的高效用项集数量、发现高效用项集的能力和运行时间方面具有更好的性能。
-
公开(公告)号:CN117745390A
公开(公告)日:2024-03-22
申请号:CN202311821171.6
申请日:2023-12-26
申请人: 江南大学
IPC分类号: G06Q30/0601 , G06Q30/0201 , G06N7/02 , G06N3/126
摘要: 本发明涉及模糊供应链配置优化技术领域,公开一种多种群遗传算法的多目标模糊供应链配置优化方法和系统,包括:获取供应链中每个成员的配置的时间和成本,构建时间和成本的隶属度函数和模糊集,使用贴近度理论从模糊集中消除时间和成本的模糊性;根据供应链中的成员的配置的时间和成本构建供应链整体的总时间的目标函数和总成本的目标函数,构建用于优化时间和成本的种群,结合使用贪婪方法和多种选择策略求解所述供应链整体的总时间的目标函数和总成本的目标函数,得到供应链中的成员的配置的最优选择方案。本发明可以在综合多目标优化的同时降低求解难度、提高解的质量。
-
公开(公告)号:CN117391204A
公开(公告)日:2024-01-12
申请号:CN202311388195.7
申请日:2023-10-24
申请人: 江南大学
摘要: 本发明公开了一种基于互信息引导的混合贝叶斯网络结构学习方法,涉及信息处理及人工智能技术领域,该方法包括:对数据集利用条件独立测试和互信息限制结构的搜索空间并生成初代种群;基于互信息对当前种群进行个体修正并评估适应度;对当前种群执行以下迭代寻优操作:根据当前种群的个体适应度,选择参与交叉操作的个体进行交叉操作;对交叉操作得到的新种群,提取互信息介于中间阈值的两节点进行变异操作,同时对互信息不在中间阈值的连接边和独立节点进行保护,产生下一代种群;再次基于互信息对当前种群进行个体修正并进行最优个体的更新;若满足迭代终止条件则输出当前种群中适应度最高的个体作为最优BN结构;否则重新执行迭代寻优操作。
-
-
-
-
-
-
-
-
-