一种AlN纳米线的制备方法
    61.
    发明公开

    公开(公告)号:CN109264678A

    公开(公告)日:2019-01-25

    申请号:CN201811240967.1

    申请日:2018-10-24

    Abstract: 本发明提出一种AlN纳米线的制备方法,包括步骤1、混料:将Ti粉、Al粉和C粉进行混合;步骤2、研磨:在球磨罐中加入研磨球,将步骤1所得原料放入球磨罐中,在球磨罐中倒入酒精直至将原料完全盖住,把球磨罐放入球磨机中固定,湿磨8h~12h;步骤3、烘干:将研磨后的物质在水浴环境下进行烘干,烘干温度为50℃~60℃;步骤4、过筛:将烘干后的物质进行过筛,以将研磨球与原料进行分离;步骤5、烧结与取料:将步骤4所得的原料在氮气环境下进行烧结,烧结温度达到1300℃或以上时,保持该温度0.5h~4h,通过气相沉积法制备AlN纳米线,当温度下降后,即可取出烧结产物,即AlN纳米线。通过上述制备方法制备的纳米线为AlN单晶,其直径范围在100-200nm,长度范围以5-10μm居多。

    一种石墨烯微片负载纳米镍复合粉体的制备方法

    公开(公告)号:CN106735299A

    公开(公告)日:2017-05-31

    申请号:CN201611182245.6

    申请日:2016-12-20

    Inventor: 王春雨 张鹏

    CPC classification number: B22F9/24 B22F1/0018 B82Y40/00

    Abstract: 本发明涉及石墨烯微片表面改性工艺技术领域,具体的说是一种石墨烯微片负载纳米镍复合粉体的制备方法,其包括:将石墨烯微片浸泡在氧化性酸溶液中,然后将石墨烯微片冲洗取出,使用一种含有还原剂的镍盐溶液,在机械搅拌和超声震荡共同作用下,使酸化后石墨烯微片分散在镍盐溶液中,再把以上混有石墨烯微片镍溶液置于反应釜中,在200~400℃环境下作用2‑24小时,镍纳米颗粒负载于石墨烯微片上,降温到室温下打开罐体,取出石墨烯/镍复合粉体,40‑60℃烘干即可,本发明工艺简单,易于操作,有利于工业化生产。

    一种化学镀金液
    63.
    发明公开

    公开(公告)号:CN105543816A

    公开(公告)日:2016-05-04

    申请号:CN201610072064.1

    申请日:2016-02-01

    CPC classification number: C23C18/44

    Abstract: 本发明涉及一种快速沉积金层的化学镀金液,其包括如下组分:亚硫酸金钠(以Au计)0.5-3g/L,亚硫酸钠22-28g/L,硫代硫酸钠13-20g/L,柠檬酸三铵1-5g/L;硼砂8-12g/L,硫脲0.1-5g/L;苯并三氮唑0.01-0.09g/L。镀液适宜的pH值为6.5-7.2,适宜的温度为75-85℃。本发明所提供的镀金液无氰化物,镀液稳定性好,镀速快,20min可镀厚0.4μm以上,镀层外观金黄,色泽鲜亮,满足大多数产品镀厚金要求。既能够满足功能性电子电镀的要求,也可以作为装饰性镀金液使用。

    一种具有荧光效应的Eu-Sialon纳米带及其制备方法

    公开(公告)号:CN102942931A

    公开(公告)日:2013-02-27

    申请号:CN201210487456.6

    申请日:2012-11-27

    Abstract: 本发明涉及一种具有荧光效应的Eu-Sialon纳米带,其是将Si-Al-O-N-C粉末与Eu化物粉(铕化物粉)混合,Eu化物占混合粉料的体积百分比为0.1-2%;混合粉料置于石墨坩埚中,在高压氮气环境下,通过化学气相沉积法生长,在坩埚中得到Eu掺杂的Eu-Sialon纳米带。所得Eu-Sialon纳米带是新一代荧光转换材料,其具有极高的磷光密度和较好的高温量子效率,由Eu-Sialon纳米带组成的双色或者多色LED,具有高流明效率、高色稳定性、色温可调性、高显色指数等优良的性能。

    一种Sialon双晶纳米带及其制备方法

    公开(公告)号:CN102924088A

    公开(公告)日:2013-02-13

    申请号:CN201210487457.0

    申请日:2012-11-27

    Abstract: 本发明涉及一种Sialon双晶纳米带及其制备方法,其是将Si-Al-O-N-C粉末与碳粉压制成圆环形预制块,在高压氮气环境下,通过化学气相沉积法生长,在圆环形预制块周围形成Sialon双晶纳米带,其厚度为10-800nm,宽度为0.1-10μm,长1-15mm。所得Sialon双晶纳米带具有其他纳米带不具备的独特性能和应用前景,比如优异的介电性能、导热性和机械强度。由于其在生长方向上具有独特的双晶结构,Sialon双晶纳米带可用于光转换,以及用于构建纳米光探测器件等。

    一种镍-稀土复合膜的制备方法

    公开(公告)号:CN101949012A

    公开(公告)日:2011-01-19

    申请号:CN201010288344.9

    申请日:2010-09-21

    Abstract: 本发明涉及一种镍-稀土复合膜的制备方法,其以金属材料为基体,在预处理过的金属材料表面上沉积镍,形成镀镍层,将上述表面形成镀镍层的金属材料浸入配置好的稀土盐溶液中,所述稀土盐的浓度是1~10g/L,浸入时间是30~120min,温度是20~30℃,而后加热烘干,温度在100℃~600℃之间,时间20~120min,即在金属材料表面得到镍-稀土复合膜。本发明膜层制备简便,设备要求低,成膜均匀,耐蚀性能高,可用于在不同种类的金属和金属基复合材料表面处理。

    一种脉冲电镀多层电磁屏蔽复合膜及其制备方法

    公开(公告)号:CN117888159B

    公开(公告)日:2024-10-18

    申请号:CN202410046253.6

    申请日:2024-01-11

    Abstract: 本申请涉及一种脉冲电镀多层电磁屏蔽复合膜及其制备方法,其中,一种脉冲电镀多层电磁屏蔽复合膜制备方法包括如下步骤:S1:对待处理基材的表面进行化学镀镍,获得镀镍打底层;S2:在电镀溶液中采用脉冲电镀的方式对镀镍打底层电镀Ni‑Fe合金,并在脉冲电镀的过程中循环更换至少两次不同的脉冲阴极电流密度,获得至少具有两层Ni‑Fe合金脉冲电镀层的脉冲电镀电磁屏蔽膜;S3:在脉冲电镀电磁屏蔽膜的外侧镀Ni层,获得具有外镀层的复合合金;S4:将具有外镀层的复合合金进行清洗,清洗后置于真空干燥箱内,真空加热干燥,完成去除内应力和除氢处理。通过本申请制备方法制得的脉冲电镀电磁屏蔽膜,层间界面可以使器件的电磁屏蔽能力得到很大提升。

    一种核壳NiO-NiSe2@C锂离子电池负极材料的制备方法

    公开(公告)号:CN115172707A

    公开(公告)日:2022-10-11

    申请号:CN202210871474.8

    申请日:2022-07-22

    Abstract: 一种核壳NiO‑NiSe2@C锂离子电池负极材料的制备方法,它属于锂离子电池负极材料的制备领域。它解决了现有过渡金属氧化合物导电性差的问题。方法:一、向N,N‑二甲基甲酰胺的水溶液中加入六水合硝酸镍、聚乙烯吡咯烷酮和均苯三甲酸,水热反应后得Ni‑MOF前驱体;二、热处理,得Ni@C复合材料;三、Ni@C复合材料与Se粉混合后硒化,得NiSe2‑Ni@C复合材料,热氧化后即完成。本发明制备的核壳NiO‑NiSe2@C锂离子电池负极材料,展现出高比容量及优异的倍率性能;引入了高导电性的碳质材料,缓解体积膨胀的同时增强了导电性。本发明适用于核壳NiO‑NiSe2@C锂离子电池负极材料的制备。

    一种碳纳米管基三维网状结构复合吸波材料及其制备方法

    公开(公告)号:CN111916916B

    公开(公告)日:2022-07-29

    申请号:CN202010659985.4

    申请日:2020-07-10

    Abstract: 本发明提出一种碳纳米管基三维网状结构复合吸波材料及其制备方法,其特征在于该吸波材料由碳纳米管和二氧化硅组成,二氧化硅包覆在碳纳米管的外壁,制备方法包括步骤1、将无水乙醇和去离子水进行混合,再将碳纳米管加入所得混合溶液中;步骤2、将步骤1所获混合溶液超声分散;步骤3、用氨水将步骤2所得混合溶液pH值调至8‑10;步骤4、将正硅酸乙酯滴入步骤3所得混合溶液,并用磁力搅拌机搅拌;步骤5、分别用去离子水和无水乙醇将步骤4所得混合溶液过滤;步骤6、将步骤5所得样品放入干燥箱,之后取出研磨成粉末,即得到碳纳米管基三维网状结构复合吸波材料。具有轻质、薄厚度和强吸收特性等优点的优异吸波材料。

Patent Agency Ranking