-
公开(公告)号:CN109861728B
公开(公告)日:2021-06-18
申请号:CN201910128413.0
申请日:2019-02-21
Applicant: 哈尔滨工程大学
IPC: H04B7/0413 , H04B7/0456 , H04K3/00 , H04W40/22 , H04W72/04
Abstract: 本发明涉及一种大规模MIMO系统的联合多中继选择与时隙资源配置方法,发明结合量子优化机制与白蚁群优化机制的优势,利用量子白蚁群优化方法来解决Massive MIMO系统的多中继选择与时隙资源配置这一复杂的混合优化问题,具有搜索速度快、全局搜索能力强的优点。本发明结合无线能量采集技术,可显著减少Massive MIMO协作通信系统信息传输过程中的能量消耗,通过用户终端与干扰中继分别向窃听器发送干扰信号以降低窃听器的信干噪比,能够有效提高Massive MIMO系统的保密容量,保证通信系统的安全性与可靠性。
-
公开(公告)号:CN112217678A
公开(公告)日:2021-01-12
申请号:CN202011097353.X
申请日:2020-10-14
Applicant: 哈尔滨工程大学
IPC: H04L12/24 , H04B17/382
Abstract: 本发明提供一种基于量子帝王蝶优化机制的双层异构网络频谱分配方法,包括:建立双层异构网络系统模型;得到帝王蝶的整数编码位置;计算所有帝王蝶的适应度值,得到全局最优量子位置及其对应的全局最优位置;对帝王蝶种群排序,分为两个帝王蝶子种群;更新子种群中每个帝王蝶个体的过渡量子位置;合并两个新生成的子种群为一个新的过渡种群,更新帝王蝶种群的量子位置,计算量子帝王蝶的适应度值,更新全局最优量子位置和全局最优位置;判断是否达到最大迭代次数,若是则输出全局最优量子位置和全局最优位置,全局最优位置即为频谱分配的最佳方案;否则令迭代次数加1,返回进行新一轮的迭代。本发明解决整数离散优化的双层异构网络频谱分配问题。
-
公开(公告)号:CN107454604B
公开(公告)日:2020-12-04
申请号:CN201710724612.9
申请日:2017-08-22
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种认知中继网络的量子化学反应优化多中继选择方法。1建立认知系统中继选择模型。2初始化量子分子集合及系统参数。3对集合中所有量子分子的势能进行评价,选择势能最小的量子分子的测量态作为全局最优解。4将量子分子的动能从高到低排序,分别进行分解反应、无效碰撞、合成反应。5对新产生的量子分子的势能进行评价。若新产生的量子分子的势能最小值小于上一代势能最小值,则记为新的全局最优解。6如果迭代次数小于预先设定的最大迭代次数,返回第4步;否则输出全局最优解。本发明均衡考虑认知中继网络在有主用户和无主用户约束条件下,基于量子化学反应机制,选择令系统吞吐量最大化的中继选择方案。
-
公开(公告)号:CN107276559B
公开(公告)日:2020-07-28
申请号:CN201710333472.2
申请日:2017-05-12
Applicant: 哈尔滨工程大学
IPC: H03H17/00
Abstract: 本发明提供的是一种量子生物地理学演进机制的多约束FIR数字滤波器生成方法。初始化栖息地,计算适宜指数。将栖息地映射为量子栖息地,对量子栖息地进行降序排列,初始化每个量子栖息地。对量子栖息地进行迁移操作,再对量子栖息地的后50%进行两种变异操作。将量子栖息地映射为栖息地,计算栖息地的适宜指数,对量子栖息地进行降序排列,更新量子栖息地,更新量子信仰空间中的量子形势知识和量子规范知识。更新每个量子栖息地。循环迭代,最终输出量子形势知识中的最优量子栖息地,映射为栖息地,对应FIR数字滤波器的参数向量。本发明设计出的FIR数字滤波器具有收敛速度快,滤波器性能好和满足多约束要求等优点。
-
公开(公告)号:CN108880734B
公开(公告)日:2020-05-15
申请号:CN201810531057.2
申请日:2018-05-29
Applicant: 哈尔滨工程大学
IPC: H04W72/04 , H04K1/00 , H04K3/00 , H04B7/0456 , H04B7/08
Abstract: 本发明提供一种量子回溯搜索优化的CCFD‑Massive MIMO系统功率分配方法,包括:建立系统模型;初始化量子种群及系统参数,经映射规则,得到量子个体的映射态;计算量子个体的适应值,将量子种群中适应值最大的量子个体记为全局最优解;通过进化和交叉策略生成新的量子个体;根据映射规则得到新生成的量子个体的映射态,计算适应值,经贪婪选择,更新量子种群及全局最优解;如果迭代次数小于预先设定的最大迭代次数,返回第四步;否则,终止迭代,输出全局最优解,得到最佳功率分配方案。本发明有效提高了频谱利用率,充分考虑了基站和用户的自干扰、互干扰,很大程度上提高了系统的保密容量,为复杂系统的功率分配问题提供了一种新的解决方法。
-
公开(公告)号:CN110046326A
公开(公告)日:2019-07-23
申请号:CN201910349676.4
申请日:2019-04-28
Applicant: 哈尔滨工程大学
Abstract: 本发明公开一种时频DOA估计方法,包括:建立阵列接收的时域数据模型;对时域数据进行快拍采样;对快拍采样数据进行时频分析得到PWVD矩阵;计算时频平均的快拍采样数据PWVD矩阵;构造极大似然方程;初始化量子地雷量子位置;由极大似然方程构造适应度函数;模拟量子地雷爆炸过程获得量子弹片的量子位置;计算量子弹片量子位置映射态的适应度函数值,选择适应度大的优秀量子位置作为放置量子地雷的量子位置,用于引爆下一代的量子地雷,根据所有量子位置的适应度更新全局最优量子位置;达到最大迭代次数后,输出信号方位角最优估计值,本发明能在较短时间内得到较准确的非平稳信号DOA估计结果,并且在信号源为相干源的条件下仍有效。
-
公开(公告)号:CN109460056A
公开(公告)日:2019-03-12
申请号:CN201811310155.X
申请日:2018-11-06
Applicant: 哈尔滨工程大学
IPC: G05D1/10
Abstract: 本发明涉及一种基于量子磷虾群演化机制的无人机集群作战博弈决策方法,包括以下步骤:建立无人机协同作战博弈决策模型;初始化量子磷虾群;根据适应度函数计算量子磷虾群中每一只量子磷虾位置的适应度值;更新每只量子磷虾的量子旋转角和量子位置;对量子磷虾群中每只量子磷虾更新后的位置进行适应度计算,通过映射规则得到每只量子磷虾更新后的位置,计算位置的适应度;确定量子磷虾群的全局最优量子位置;循环判断;输出量子磷虾群的全局最优位置,映射为博弈的混合策略组合。本发明结合博弈论对无人机集群作战指挥决策进行分析,通过理性的决策分析使得作战双方都能得到最大的收益,更加符合无人机集群作战的战场环境,有更强的适用性。
-
公开(公告)号:CN109212465A
公开(公告)日:2019-01-15
申请号:CN201811017378.7
申请日:2018-09-01
Applicant: 哈尔滨工程大学
IPC: G01S3/00
Abstract: 一种基于文化蚁狮机制的特殊阵列动态测向方法,属于阵列信号处理领域。本发明包括如下步骤:设置非等距双均匀阵列,初始化搜索区间和最大迭代次数,更新协方差矩阵,初始化蚁群和蚁狮群空间,计算适应度值,标记精英蚁狮,初始化信仰空间;判断迭代次数是否为文化算子参与度的整数倍,若不是,则轮盘赌选择优秀的蚁狮,蚂蚁围绕其和精英蚁狮随机游走,计算蚂蚁适应值,更新蚁狮位置和精英蚁狮位置,否则对蚁狮变异,计算变异后蚁狮适应值,选取适应值较优的一半蚁狮作为下一代蚁狮,更新信仰空间和精英蚁狮位置。本发明不仅跟踪速度快,搜索精度高,而且可扩展阵列孔径,突破信源数不能超过天线数的限制,回避传统方法对天线摆放的苛刻要求。
-
公开(公告)号:CN108985549A
公开(公告)日:2018-12-11
申请号:CN201810545547.8
申请日:2018-05-25
Applicant: 哈尔滨工程大学
IPC: G06Q10/06
Abstract: 本发明公开了基于量子鸽群机制的无人机任务分配方法,属于无人机资源分配领域。步骤为:建立无人机分阶段任务分配模型;确定需要执行的任务,初始化量子鸽群;计算每只量子鸽子的适应度值,选出局部最优位置和全局最优位置;更新量子旋转角矢量,来更新每只量子鸽子的量子速度,得到量子鸽子的位置;对每只量子鸽子进行适应度评价;确定局部最优位置和全局最优位置;判断是否达到最大迭代次数;输出全局最优位置;判断任务分配是否完成;获得任务分配方案。本发明实现了以较少的时间代价获取更高的收敛精度、更快的收敛速度和更合理的任务分配方案,能够有效解决对无人机多约束的要求,得到更加合理的无人机任务分配方案。
-
公开(公告)号:CN108549402A
公开(公告)日:2018-09-18
申请号:CN201810224721.9
申请日:2018-03-19
Applicant: 哈尔滨工程大学
IPC: G05D1/10
CPC classification number: G05D1/104
Abstract: 本发明涉及一种基于量子乌鸦群搜索机制的无人机群任务分配方法,包括:建立从多个起点到多个任务的无人机群任务分配模型,包括无人机型号数、起点终点和分配模型;初始化量子乌鸦群;根据适应度函数对每只量子乌鸦进行适应度计算,计算出的适应度函数最小值对应的量子乌鸦的位置存为全局最优食物位置;更新每只量子乌鸦的量子位置和位置;根据适应度函数对每只量子乌鸦进行适应度计算,确定每只量子乌鸦的隐藏的食物位置,同时找到迄今为止的最优食物位置,若达到最大迭代代数则输出全局最优食物位置,映射为任务分配矩阵。本发明解决了离散多约束目标函数求解问题,并设计离散量子乌鸦算法作为演进策略,具有收敛速度快,收敛精度高的优点。
-
-
-
-
-
-
-
-
-