-
公开(公告)号:CN118676911A
公开(公告)日:2024-09-20
申请号:CN202410791743.9
申请日:2024-06-19
Applicant: 山东大学
IPC: H02J3/00 , G06F18/27 , G06F18/20 , G06F18/21 , G06N7/01 , G06N5/01 , G06N20/20 , G06N3/045 , G06N3/092 , G06N3/084
Abstract: 本发明涉及一种自适应动态组合的负荷概率预测方法及装置,属于电力系统负荷预测技术领域,包括:选择多种概率预测模型作为组合子模型,优化训练各子模型,提升各子模型概率预测精度,用于对电荷概率进行分别预测;针对每一子模型进行贝叶斯模型平均,得到组合后的整体预测结果;对预测结果进行评价;构建基于深度确定性策略梯度算法;构建基于深度确定性策略梯度算法的短期负荷预测模型,用于得到自适应动态预测结果。本发明克服单一预测模型在某些条件下表现不佳的问题,且实现环境与组合权重之间的动态映射,在线感知外界环境变化、自适应更新组合权重,从而增强模型的适应性,有效提升概率预测结果的稳定性和概率预测精度。
-
公开(公告)号:CN118676910A
公开(公告)日:2024-09-20
申请号:CN202410791742.4
申请日:2024-06-19
Applicant: 山东大学
IPC: H02J3/00 , G06F18/241 , G06F18/213 , G06F18/22 , G06N3/094 , G06N3/096 , G06N3/0464 , G06N3/0442 , G06N3/045
Abstract: 本发明涉及一种基于深度迁移学习的节假日负荷预测方法及系统,属于电力负荷预测技术领域。首先构建改进Transformer的域对抗迁移学习网络,将Transformer模型的Decoder结构丢弃,以Transformer模型的Encoder部分作为域迁移学习的分类预测器,利用常规负荷样本作为源域、节假日负荷样本作为目标域对模型进行预训练,最大限度地挖掘常规负荷与节假日负荷的相似信息和最优可共享模型参数;最后将域对抗学习网络的训练得到的改进Transformer模型作为预训练模型,以节假日负荷样本数据作为目标域,采用Adapter方法对预训练模型参数进行微调,提升节假日负荷预测的针对性和精度。
-
公开(公告)号:CN118554424A
公开(公告)日:2024-08-27
申请号:CN202410568674.5
申请日:2024-05-09
Applicant: 国网山东省电力公司营销服务中心(计量中心) , 山东大学
IPC: H02J3/00 , G06F18/213 , G06F18/2113 , G06F18/2321 , G06N3/096 , G06N3/0442 , G06Q50/06
Abstract: 本发明提供了一种基于聚类与迁移学习的代理购电用户负荷预测方法及系统,本发明基于多元信息挖掘,探索代理购电用户分区域、精细化聚类方法,基于聚类的用户负荷分析方法,根据其用电行为特征将用户聚类为不同的用电群体,在行业、产业分类的基础上对用户再次进行聚类,确定不同用电群体负荷时空分布,再针对每类用户建模分析以满足精细化电力负荷预测的需求,能够有效提升代理购电用户负荷预测的准确性。
-
公开(公告)号:CN118172047B
公开(公告)日:2024-08-02
申请号:CN202410591456.3
申请日:2024-05-14
Applicant: 山东大学
Abstract: 本发明提供了一种考虑可用装机容量的短期风电功率预测方法及系统。该方法包括,依据极端天气对风电功率影响机理的分析结果,得到关键气象因子;基于历史气象数据,采用映射模型,将历史气象数据映射为理论功率数据,依据历史气象数据对应的历史功率数据和理论功率数据,对功率损失预测进行直接建模,引入可用装机容量概念,基于理论功率数据和功率损失值预测结果,得到可用装机容量预测结果;分别对正常天气下的功率和关键气象因子下的功率进行数据处理,构建功率训练数据集;基于功率训练数据集,采用功率预测模型,得到功率预测结果,将可用装机容量预测结果与功率预测结果相乘,得到极端天气下风电场站功率预测结果。
-
公开(公告)号:CN118070977A
公开(公告)日:2024-05-24
申请号:CN202410458016.0
申请日:2024-04-17
Applicant: 山东大学
IPC: G06Q10/04 , G06Q50/06 , G06F18/27 , G06F18/10 , G06F123/02
Abstract: 本发明属于新能源功率预测技术领域,提供了一种考虑空间波动传播的新能源缺失数据估算方法及系统,获取多个分布式新能源站点的光伏功率序列;利用经验模态分解方法提取其中的波动过程和平稳过程;针对波动过程,利用导数动态时间规整方法提取波动对应时间序列,提取站点间的波动速度,对目标站点进行插值估算,基于插值估算结果,采用局部加权回归获取标准的功率序列;针对平稳过程,利用静态插值算法进行插值计算,得到插值后的功率序列;将两个序列进行加和,获得最终结果。本发明能够更为准确地提取波动传递过程,提高插值估算的精度。
-
公开(公告)号:CN116629461B
公开(公告)日:2023-10-17
申请号:CN202310911746.7
申请日:2023-07-25
Applicant: 山东大学
Abstract: 本发明公开一种主动配电网分布式优化方法、系统、设备及存储介质,涉及预测为目的的数据处理技术领域,包括:确定智能体动作量控制策略;构建全局优势函数并分解为单智能体优势函数,以最小化单智能体优势函数为目标,构建用于更新智能体动作量控制策略的目标函数;根据训练样本集在设定的约束条件下对目标函数进行训练;以最小化弃风弃光惩罚成本、网络损耗成本和实际储能电量与计划储能电量的电量偏差惩罚成本为分布式优化目标,根据实时状态量和分布式优化目标,采用训练后的目标函数,得到智能体动作量控制策略。在保留储能日前优化中追求的削峰填谷和提供可调节裕度作用的同时,发挥储能应对实时功率波动的快速调节能力。
-
公开(公告)号:CN116404647B
公开(公告)日:2023-08-29
申请号:CN202310677314.4
申请日:2023-06-09
Applicant: 山东大学 , 中国电力科学研究院有限公司
IPC: H02J3/00 , G06Q10/04 , G06F18/232 , G06Q50/06
Abstract: 本发明属于光伏预测技术领域,具体涉及一种计及动态汇聚特性的分布式光伏短期功率预测方法及系统,包括:考虑动态时间规整的序列插值,调节分布式光伏的功率序列,得到分布式光伏插值后的功率规范曲线;考虑基波占比的无监督聚类,将所得到的功率规范曲线进行分布式光伏站点的动态集群划分,构建分布式光伏的动态汇聚模型;根据所构建的动态汇聚模型得到分布式光伏的聚类结果,根据所得到的聚类结果,将聚类后的气象输入到预设的长短期记忆网络功率预测模型,预测分布式光伏的功率。
-
公开(公告)号:CN116029465A
公开(公告)日:2023-04-28
申请号:CN202310314712.X
申请日:2023-03-29
Applicant: 山东大学
IPC: G06Q10/04 , G06Q50/06 , G06N3/0475 , G06N3/0442 , G06N3/094
Abstract: 本发明属于风电功率预测技术领域,为了解决现有预测算法在小样本条件下难以训练以及极端预测偏差大的问题,提供了一种转折性天气日前风电功率预测方法、装置、介质及设备。其中,转折性天气日前风电功率预测方法包括获取设定时间段内的天气信息,并确定出相应气象场景及其对应的转折性天气功率预测模型;从所述天气信息中,提取与所述气象场景相匹配的气象敏感特征;利用预先训练的转折性天气功率预测模型对提取的所述气象敏感特征进行处理,得到日前风电功率预测结果。其有效降低了极端预测偏差,提高了考虑转折性天气的日前风电功率预测精度。
-
公开(公告)号:CN115239029B
公开(公告)日:2023-01-31
申请号:CN202211161172.8
申请日:2022-09-23
Applicant: 山东大学
Abstract: 本发明属于风电功率预测技术领域,其解决了无法直接参照超短期预测将历史若干时刻实测风电功率作为预测模型输入的问题,提供一种考虑功率时序及气象相依特性的风电功率预测方法及系统。其中该方法包括得到预设区域高时空分辨率的网格化数值气象预报结果;基于网格化数值气象预报结果及训练完成的连续条件随机场模型,得到日前风电功率预测结果;连续条件随机场模型包括连续条件随机场的一元势函数模型和二元势函数模型;一元势函数模型用于初步预测出日前风电功率序列;二元势函数模型用于基于特征相似性来调整量化表征的初步预测的日前风电功率序列进行调整,得到最终的日前风电功率预测结果。其能够实现准确的日前风电功率预测。
-
公开(公告)号:CN110689183B
公开(公告)日:2022-03-11
申请号:CN201910894175.4
申请日:2019-09-20
Applicant: 山东大学
Abstract: 本公开提供了一种集群光伏功率概率预测方法、系统、介质及电子设备,采集各光伏场站的历史数据,对采集到的历史数据进行归一化处理;利用改进的卷积神经网络‑分位数回归模型分别从单个光伏场站的输入数据中提取代表性特征,综合提取区域光伏场站之间的相关性特征;改进的卷积神经网络‑分位数回归模型根据提取到的区域光伏场站之间的相关性特征输出区域光伏发电功率的分位数预测结果;本公开改进了卷积神经网络的结构,使之成为一个多输入的深层神经网络,改进的卷积神经网络首先对区域内的每个光伏场站进行特征提取,再对整个区域的光伏场站进行相关性特征提取,极大的提高集群光伏功率概率预测的精度,降低了计算成本。
-
-
-
-
-
-
-
-
-