一种基于复数图卷积神经网络的信号调制识别方法

    公开(公告)号:CN116680608A

    公开(公告)日:2023-09-01

    申请号:CN202310505266.0

    申请日:2023-05-08

    Abstract: 本发明属于通信领域,具体涉及一种基于复数图卷积神经网络的信号调制识别方法。将待识别信号数据集分解为I路与Q路信号;将I路与Q路信号数据利用可视图算法转化为图网络数据,并分成训练集、验证集和测试集;搭建复数图卷积神经分类网络模型;训练复数图卷积神经分类网络模型,并通过验证集调整复数图卷积神经分类网络模型的超参数和对复数图卷积神经分类网络模型的相关能力进行初步评估;将测试集输入至经训练验证后性能表现最好的复数图卷积神经分类网络模型中,输出信号调制方式的分类测试结果,以此来评估复数图卷积神经分类网络模型的性能。本发明旨在解决基于卷积神经网络的信号调制识别方法无法处理非结构化、非欧几里得、不具备平移不变性的信号数据,输入局部维度可变、局部排列无序的多模态数据会导致调制模式识别的结果不理想的问题。

    一种基于图卷积神经网络的跳频信号调制识别方法

    公开(公告)号:CN116566777A

    公开(公告)日:2023-08-08

    申请号:CN202310504648.1

    申请日:2023-05-08

    Abstract: 本发明提出一种基于图卷积神经网络的跳频信号调制识别方法。所述方法包括以下步骤:步骤1:提取跳频信号的节点特征;步骤2:构建邻接矩阵和边,将跳频信号转换为无向拓扑图;步骤3:根据跳频信号图域转换数据构建图卷积神经网络GCN模型;步骤4:利用训练样本集合训练GCN模型,将测试样本输入训练好的GCN模型中输出识别结果。本发明提出的信号图域转换方法在降低节点和边的数量的基础上,提取多种节点特征,减少了参数和计算量且抗噪声性能好,构建的GCN模型可以获取受信噪比影响较小的空间结构信息,在保证了识别准确率的基础上网络层数少,实时性好。

    基于FPGA的实对称矩阵的特征值分解的并行实现方法

    公开(公告)号:CN110222307B

    公开(公告)日:2022-10-28

    申请号:CN201910504034.7

    申请日:2019-06-12

    Abstract: 本发明属于阵列信号处理领域,具体涉及基于FPGA的实对称矩阵的特征值分解的并行实现方法。具体实现步骤如下:根据阵元数目构建特征值分解的脉动阵列结构,设定所需的处理单元;对接收的阵元信号进行预处理;求解旋转角度并将其转换为角度值;查表得到对应的正弦值和余弦值;更新矩阵元素和特征向量;判断是否达到要求迭代次数;若未达到,在阵列结构中交换矩阵元素为下次迭代做准备;判断是否需要改变处理单元内部的输入输出顺序;若是,则改变输入输出数据的顺序。本方法通过处理单元之间数据的传递以及处理单元内部的数据顺序的转换,提高了迭代效率而且运算速度快,应用前景广阔。

    一种三星无源融合定位体制机动目标跟踪方法

    公开(公告)号:CN113325452A

    公开(公告)日:2021-08-31

    申请号:CN202110569013.0

    申请日:2021-05-25

    Abstract: 本发明属于三卫星编队对机动目标的无源跟踪技术领域,具体涉及一种三星无源融合定位体制机动目标跟踪方法。本发明是针对三星融合定位系统提出的改进,引入了迭代并利用L‑M方法改进扩展卡尔曼滤波,可以用更少的迭代次数降低扩展卡尔曼滤波对强非线性系统进行线性化处理时产生的截断误差本发明在粒子滤波中用改进的IEKF来产生重要性密度函数,融入最新观测信息,使得产生的重要性密度函数更加贴近实际后验概率,进而提高跟踪滤波精度。本发明可以在没有高程先验信息的情况下对运动的辐射源目标进行高精度跟踪。

    一种混叠短波通信信号检测与识别方法

    公开(公告)号:CN113312996A

    公开(公告)日:2021-08-27

    申请号:CN202110545114.4

    申请日:2021-05-19

    Abstract: 本发明公开了一种混叠短波通信信号检测与识别方法,包括:步骤1:对混叠短波通信信号做快速傅里叶变换得到其频谱,然后进行幅度归一化;步骤2:滑窗将窗口检测区对准数值为1的点即将信号载波中心包含在了窗口检测区,然后进行基带不变性操作,调整信号带宽;步骤3:保存滑窗内容:步骤4:基于深度学习模型进行分类识别:步骤5:绘制短波频段通信信号分布图。本发明不受信道频段先验知识限制、无需分离单个信号、信号中心频率识别精度可调、采用复数卷积神经网络对频谱分类识别准确率高、可检测识别与深度学习模型训练集信号分布不同的通信信号。

    信道状态信息的通道不一致性误差校正测向方法

    公开(公告)号:CN111273215B

    公开(公告)日:2021-01-12

    申请号:CN201911281522.2

    申请日:2019-12-13

    Abstract: 本发明公开了信道状态信息的通道不一致性误差校正测向方法,属于室内定位技术领域。实现步骤如下:对CSI测向算法进行建模;利用单天线数据计算直达波飞行时间ToF;成对天线间CSI数据平滑处理增加接收阵列孔径;利用直达波飞行时间ToF和直达波入射角度先验信息进行成对天线间幅相误差计算;根据离线数据建立不同来波方向情况下幅相误差表格,在线过程中对照表格动态选取Γ值,进行通道幅相误差校正和迭代测向。本发明解决了商用Wi‑Fi网卡复杂的通道间幅相误差校正问题,保证了Wi‑Fi网卡CSI测向的精度,有效降低基于商用Wi‑Fi网卡的室内定位系统部署使用的复杂度和成本,应用前景广阔,而且操作简单、不需要专用设备、能有效适应室内多径环境。

    一种脉冲丢失混叠情况下的PRI抖动雷达信号分选方法

    公开(公告)号:CN112198481A

    公开(公告)日:2021-01-08

    申请号:CN202011072664.0

    申请日:2020-10-09

    Abstract: 本发明公开了一种脉冲丢失混叠情况下的PRI抖动雷达信号分选方法,能够在脉冲丢失混叠等情况下,分选抖动雷达信号,判断抖动信号抖动率,完成对抖动雷达信号的搜索与提取。本发明改进PRI交叠箱结构,利用多级箱结构提高脉冲丢失混叠情况下的抖动信号检测能力;通过对多级箱PRI变换结果以及箱内脉冲对个数曲线分析,实现对抖动信号抖动率进行判断,提升信号分析能力;结合PRI估计值与抖动率,利用相关性判断置信度,分情况提取脉冲序列,有效降低电磁空间复杂度。可证明该方法分选算法性能良好,易于工程实现。

    一种基于树形结构与逐层次节点删减的数据关联方法

    公开(公告)号:CN111460051A

    公开(公告)日:2020-07-28

    申请号:CN202010253442.2

    申请日:2020-04-02

    Abstract: 本发明提供一种基于树形结构与逐层次节点删减的数据关联方法,得到角度观测值;计算三站交叉定位结果;计算交叉定位点角度误差;逐层建立一个树形结构,并进行初步的节点删减;对树形结构进行进一步的逐层次节点删减;获取最终的数据关联组合;本方法综合利用节点的当前角度误差与数据组合累积角度误差进行节点删减,有效地降低了计算复杂度,较好地兼顾了数据关联准确率与计算实时性的要求;本发明通过建立树形结构,并对每一层节点进行逐层处理与删减,可以保证较高的统计关联准确率,并有较低的运算复杂度。相对遍历所有数据关联组合的暴力破解法,该方法计算复杂度较低,速度快,有效的保证了算法实时性。

    一种基于CSI的到达角与到达时间差单接入点定位方法

    公开(公告)号:CN111405657A

    公开(公告)日:2020-07-10

    申请号:CN202010253356.1

    申请日:2020-04-02

    Abstract: 本发明一种基于CSI的到达角与到达时间差单接入点定位方法,步骤一:将单接入点的多天线分成多组:距离较远的天线组用于获取到达时间差定位信息;距离较近的天线组阵列用于获取到达角定位信息;步骤二:扫描获取单接入点每个天线的多个CSI样本;步骤三:计算待定位目标的单接入点不同天线的直达波到达时间差;步骤四:计算待定位目标的单接入点各个天线阵列的直达波到达角;步骤五:建立基于到达时间差与到达角的目标位置约束方程,根据单接入点各天线坐标解算出目标位置。本发明与现有通信协议兼容,能有效降低单接入点定位系统部署的复杂度和成本;同时利用AOA与TDOA信号的互补优势,可以保证精确和可靠的定位结果。

    一种多分量雷达信号脉内调制方式识别方法

    公开(公告)号:CN110532932A

    公开(公告)日:2019-12-03

    申请号:CN201910787759.1

    申请日:2019-08-26

    Abstract: 本发明涉及深度学习的自动识别算法领域,具体涉及一种多分量雷达信号脉内调制方式识别方法。获取几种不同脉内调制方式的单分量或交叠多分量雷达信号的时频图像;利用图像处理算法,对雷达信号时频图像进行预处理,将雷达信号中包含的信号类型作为标签,制作训练集和测试集;设计基于卷积神经网络的预训练网络提取雷达信号时频图像特征,设计基于强化学习的多分量信号分类网络获取分类识别结果;训练、测试、完善网络结构和参数;实现多分量信号的分类识别。本发明所述的多分量雷达信号识别算法在低信噪比情况下,具有广泛的雷达信号类型适应范围和较高的识别准确率,实现了随机交叠多分量雷达信号的脉内调制方式识别。

Patent Agency Ranking