一种基于关键词语义分解的智能问答方法及装置

    公开(公告)号:CN117609460A

    公开(公告)日:2024-02-27

    申请号:CN202311615794.8

    申请日:2023-11-29

    摘要: 本发明涉及人工智能技术领域,具体提供了一种基于关键词语义分解的智能问答方法及装置,包括:将用户问句输入至预先训练的关键词抽取模型,得到预先训练的关键词抽取模型输出的关键词;在文本信息索引库中获取关键词对应的召回答案;将关键词及其对应的各召回答案分别组成问答对并作为预先训练的相似度识别模型的输入,得到预先训练的相似度识别模型输出的关键词与其对应的各召回答案之间的相似度,选取相似度大于预设值的召回答案作为关键词的答案;将用户问句和关键词的答案作为自动总结分析模型的输入,得到自动总结分析模型输出的用户问句回答结果。本发明提供的技术方案,能够使用户的问句可以实现问句关键词语义切分,同时保证召回效果。

    一种跨媒体图像检索方法及系统

    公开(公告)号:CN113536013B

    公开(公告)日:2024-02-23

    申请号:CN202110618244.6

    申请日:2021-06-03

    摘要: 本发明提出了一种跨媒体图像检索方法及系统,包括:获取数据库中所有图片和待检索的文本标题;将所述图片输入到预先构建的图片标题生成模型,得到所述图片对应的文本标题,并将所述图片与所述图片对应的文本标题以对的形式更新数据库中原始图片;采用文本匹配的检索方法从更新后的数据库中检索所述待检索的文本标题对应的图片;其中,所述图片标题生成模型是基于卷积神经网络‑循环神经网络进行训练,并采用强化学习方法对所述图片标题生成模型的参数优化后得到。本发明的技术方案采用卷积神经网络—循环神经网络进行训练,得到了实体之间的关系,并采用强化学习方法对图片标题生成模型的参数进行优化,提高了检索的效率。