-
公开(公告)号:CN114709255B
公开(公告)日:2024-09-10
申请号:CN202210349844.1
申请日:2022-04-02
申请人: 东南大学 , 东南大学—无锡集成电路技术研究所
摘要: 本发明公开一种基于异质结的高功率密度隧穿半导体器件及其制造工艺,器件元胞结构包括:N+衬底,其下设有漏极金属,其上设有N‑漂移区;在N‑漂移区内对称设有一对沟槽,槽底设有P+区,在槽内设有石墨烯源区,石墨烯源区上设有源极金属,N‑漂移区上设有与石墨烯源区部分交叠的栅介质层,栅介质层上设有多晶硅栅,多晶硅栅上设有钝化层,石墨烯源区与N‑漂移区形成异质结。本发明器件结构对注入工艺要求低,元胞尺寸小,单位面积元胞数量多,大幅提升了器件的功率密度,有效降低器件的比导通电阻、亚阈值摆幅,简化了制造工艺,降低了器件成本。器件反偏耐压时,P+区使电场峰值从异质结边界处转移到PN结边界处,提高了器件雪崩能力,增大了击穿电压。
-
公开(公告)号:CN113990965A
公开(公告)日:2022-01-28
申请号:CN202111230806.6
申请日:2021-10-22
申请人: 东南大学 , 东南大学—无锡集成电路技术研究所
IPC分类号: H01L31/0224 , H01L31/108 , H01L31/18
摘要: 本发明是一种混合石墨烯电极的半导体器件及其制造方法,该器件的元胞结构包括:N型衬底,N型缓冲层,N型外延层,表面设有与N型外延层形成肖特基接触的石墨烯电极和金属电极,衬底下面设有与N型衬底形成欧姆接触的金属背电极。本发明的优点在于石墨烯具有极高的透光率和可调控的功函数,其与功函数较高的金属在N型外延层表面组成混合电极,可使器件的暗电流降低,噪音降低,灵敏度提高,检测弱信号能力增强,波长探测范围增大,性能稳定性提高。还可以降低器件正向导通状态时的开启电压,以及降低阻断状态下的泄漏电流,提高击穿电压。本发明器件可应用于光电领域和功率领域。
-
公开(公告)号:CN113990965B
公开(公告)日:2023-12-19
申请号:CN202111230806.6
申请日:2021-10-22
申请人: 东南大学 , 东南大学—无锡集成电路技术研究所
IPC分类号: H01L31/0224 , H01L31/108 , H01L31/18
摘要: 本发明是一种混合石墨烯电极的半导体器件及其制造方法,该器件的元胞结构包括:N型衬底,N型缓冲层,N型外延层,表面设有与N型外延层形成肖特基接触的石墨烯电极和金属电极,衬底下面设有与N型衬底形成欧姆接触的金属背电极。本发明的优点在于石墨烯具有极高的透光率和可调控的功函数,其与功函数较高的金属在N型外延层表面组成混合电极,可使器件的暗电流降低,噪音降低,灵敏度提高,检测弱信号能力增强,波长探测范围增大,性能稳定性提高。还可以降低器件正向导通状态时的开启电压,以及降低阻断状态下的泄漏电流,提高击穿电压。本发明器件可应用于光电领域和功率领域。
-
公开(公告)号:CN114709255A
公开(公告)日:2022-07-05
申请号:CN202210349844.1
申请日:2022-04-02
申请人: 东南大学 , 东南大学—无锡集成电路技术研究所
摘要: 本发明公开一种基于异质结的高功率密度隧穿半导体器件及其制造工艺,器件元胞结构包括:N+衬底,其下设有漏极金属,其上设有N‑漂移区;在N‑漂移区内对称设有一对沟槽,槽底设有P+区,在槽内设有石墨烯源区,石墨烯源区上设有源极金属,N‑漂移区上设有与石墨烯源区部分交叠的栅介质层,栅介质层上设有多晶硅栅,多晶硅栅上设有钝化层,石墨烯源区与N‑漂移区形成异质结。本发明器件结构对注入工艺要求低,元胞尺寸小,单位面积元胞数量多,大幅提升了器件的功率密度,有效降低器件的比导通电阻、亚阈值摆幅,简化了制造工艺,降低了器件成本。器件反偏耐压时,P+区使电场峰值从异质结边界处转移到PN结边界处,提高了器件雪崩能力,增大了击穿电压。
-
公开(公告)号:CN117832275A
公开(公告)日:2024-04-05
申请号:CN202311781172.2
申请日:2023-12-22
申请人: 东南大学
IPC分类号: H01L29/78 , H01L29/06 , H01L21/336
摘要: 本发明涉及一种低导通电阻的功率器件及制造方法,包括各个第二导电类型电场屏蔽区(9)、各个金属件(11)、预设厚度的各个导电源区件,以及自下至上依次堆叠设置的底部金属层(8)、第一导电类型衬底(1)、第一导电类型外延层(2)、第二导电类型体区层(5),并按设计实施构建功率器件,通过在栅极沟槽(10)下方设置第二导电类型电场屏蔽区(9),可以有效屏蔽电场,大幅度降低器件栅极介质层(3)承受的反向电场强度,提升器件击穿电压,增强器件可靠性,同时,设计第二导电类型电场屏蔽区(9)与对应栅极沟槽节点所接第二导电类型体区层(5)接触,从元胞结构设计上解决了屏蔽区带来的开关速度降低、导通电阻增大等问题。
-
公开(公告)号:CN110416284B
公开(公告)日:2021-04-06
申请号:CN201910653705.6
申请日:2019-07-18
申请人: 东南大学
IPC分类号: H01L29/06
摘要: 一种沟槽型半导体功率器件终端保护结构及功率器件,其功率器件结构包括第一导电类型衬底、第一导电类型缓冲层、第一导电类型漂移区,且在第一导电类型漂移区内设有原胞区和终端保护区,在原胞区外部设有主分压环、次分压环和第一导电类型截止环,在分压环的下方设有第二导电类型屏蔽保护层,该结构特征在于,在相邻的分压环之间设有第二导电类型阱区,且各分压环与第二导电类型阱区之间由第一导电类型漂移区隔离,该结构在形成耗尽层辅助耐压的同时,可以避免相邻分压环之间的电位影响,有效减小了分压环氧化层中的电场强度,提升了终端保护结构的耐压能力,且该结构与原有的制造工艺兼容,在保持成本不变的情况下提高了器件的整体性能。
-
公开(公告)号:CN117832273A
公开(公告)日:2024-04-05
申请号:CN202311748601.6
申请日:2023-12-19
申请人: 东南大学
IPC分类号: H01L29/78 , H01L29/06 , H01L29/40 , H01L21/336
摘要: 本发明公开了一种低隧穿泄漏电流的功率器件及其制造方法。器件包括衬底及其上第一导电类型漂移区;位于漂移区上方的沟槽,漂移区及上方设有沟槽,且沟槽两侧设有异质材料区,异质材料区下方设有第二导电类型耐压区域,耐压区与沟槽间以漂移区隔开,沟槽内设有栅电极,栅电极下方设有对称分布的埋层电极,沟槽、栅电极、埋层电极间分别以介质层隔离,异质材料区上方设有源电极,其与沟槽内栅电极间以介质层隔开;衬底下方设有漏电极。本发明的优势在于,器件通过隧穿原理导通,有效降低导通电阻并避免了由寄生三极管引起的闩锁效应。埋层电极的引入降低了反向阻断时隧穿点电场强度,进而降低反向漏电流。同时对器件开关速度也有提升。
-
公开(公告)号:CN115394845A
公开(公告)日:2022-11-25
申请号:CN202211175790.8
申请日:2022-09-26
申请人: 东南大学
IPC分类号: H01L29/739 , H01L29/06 , H01L21/331
摘要: 本发明公开了一种隧穿功率器件及其制造方法。包括,N型衬底,N型外延层,倾斜侧壁的第一源极区,第一源极区下方设有P型区域,外延层上方设有栅氧化层和栅电极,栅电极的上方设有钝化层,第一源极区上表面设有第二源极区,衬底下表面设有漏极金属。本发明的优势在于,隧穿功率器件降低了器件关断时的漏电流;第一源极区与漂移区形成的肖特基接触改善了器件的第三象限特性,减小了器件的动态功耗;显著降低了功率器件的元胞宽度,具有更低的导通电阻,降低了器件的静态功耗;侧壁倾斜的第一源极区减弱了隧穿点的耗尽作用,同时削弱了静电屏蔽效应,提高了器件的正向导通电流。
-
公开(公告)号:CN110176498B
公开(公告)日:2022-06-14
申请号:CN201910366654.9
申请日:2019-04-30
申请人: 东南大学
IPC分类号: H01L29/78 , H01L29/16 , H01L29/10 , H01L21/263 , H01L21/336 , H01L29/06
摘要: 一种低导通电阻的沟槽碳化硅功率器件及其制造方法。其元胞结构包括,N型衬底,N型外延层,沟槽,沟槽侧壁设有石墨烯层,沟槽内部设有栅氧化层和多晶硅栅,多晶硅栅上方设有钝化层,沟槽两侧设有P型体区、N型源区和P型体接触区,石墨烯层下方设有P型屏蔽层,源区上表面设有源极金属,衬底下表面设有漏极金属。本发明使用电子束法,以金属和碳源气体辅助,在沟槽侧壁生长石墨烯层。本发明特征在于,沟槽侧壁的石墨烯层,降低了导通电阻。石墨烯层下方的屏蔽层,屏蔽了在器件关断状态时流过石墨烯层的电流,提升器件关断特性。使用了金属镍和碳源气体辅助生长石墨烯层,提高了石墨烯层的均匀性、厚度和生长速率。
-
公开(公告)号:CN112103346A
公开(公告)日:2020-12-18
申请号:CN202011136918.0
申请日:2020-10-22
申请人: 东南大学
摘要: 本发明提出了一种具有高击穿电压的沟槽碳化硅功率器件,其器件结构包括,N型衬底,N型缓冲层,N型外延层,呈方形阵列排布的多晶硅栅,多晶硅栅的外围设有栅氧化层,栅氧化层两侧设有P型体区和N型源区,P型体区上方设有P型源区,N型源区、P型源区和P型外延柱的上方设有源极金属,N型衬底下表面设有漏极金属。本发明提出的三维器件结构的四个顶角设有P‑外延柱,该外延柱是在衬底外延过程中采用多次离子注入和外延工艺与N型外延层同步形成。P‑外延柱上方与源极金属直接相连,侧壁由栅氧化层与多晶硅栅隔离,底部与N型外延层接触。P‑外延柱的底部与N型外延层形成PN结,器件外接正向压降时,该PN结反偏,可以承受很强的电场,替栅氧化层分担了一部分电场,使沟槽拐角处栅氧化层内的电场强度降低,以提高功率碳化硅器件的击穿电压以及可靠性。
-
-
-
-
-
-
-
-
-