-
公开(公告)号:CN117236201A
公开(公告)日:2023-12-15
申请号:CN202311525721.X
申请日:2023-11-16
申请人: 南京信息工程大学 , 无锡学院 , 南京气象科技创新研究院 , 中国人民解放军国防科技大学
IPC分类号: G06F30/27 , G01W1/10 , G06N3/0455 , G06N3/048 , G06N3/08
摘要: 本发明公开了一种基于Diffusion和ViT的降尺度方法,包括以下步骤:S1建立低分辨率数值模式降水预报与高分辨率降水观测样本,并进行预处理;S2构建Diffusion‑Vision‑Transformer降水预报模型;S3训练模型,直至Diffusion‑Vision‑Transformer的误差收敛,保存模型并进行预测;本发明通过利用Vision Transformer模型代替原始Diffusion模型中的U‑Net结构,大幅提高模型的训练效率,减低模型用于预测的时间。
-
公开(公告)号:CN113032510B
公开(公告)日:2023-06-02
申请号:CN202110360971.7
申请日:2021-04-02
申请人: 中国人民解放军国防科技大学
IPC分类号: G06F16/29 , G06F16/245
摘要: 本发明涉及集合预报技术领域。本发明针对现有LBGM法中局地范围内的格点对调整系数的贡献权重相等,忽视了局地范围内格点之间的差异性问题,提供一种基于LBGM的扰动生成方法,通过引入局地半径,以有限区域内的每个格点为中心,划定对应的局地范围,通过高斯函数计算局地范围内周围格点对中心格点的高斯权重,从而得到中心格点的预报均方根误差,确定扰动公式;其中,通过高斯函数计算局地范围内周围格点对中心格点的高斯权重。在原有LBGM方法的基础上,提出高斯权重来更精细地表示局地范围内格点间的相关性,从而提高对流可分辨尺度集合预报的有效性。
-
公开(公告)号:CN113032510A
公开(公告)日:2021-06-25
申请号:CN202110360971.7
申请日:2021-04-02
申请人: 中国人民解放军国防科技大学
IPC分类号: G06F16/29 , G06F16/245
摘要: 本发明涉及集合预报技术领域。本发明针对现有LBGM法中局地范围内的格点对调整系数的贡献权重相等,忽视了局地范围内格点之间的差异性问题,提供一种基于LBGM的扰动生成方法,通过引入局地半径,以有限区域内的每个格点为中心,划定对应的局地范围,通过高斯函数计算局地范围内周围格点对中心格点的高斯权重,从而得到中心格点的预报均方根误差,确定扰动公式;其中,通过高斯函数计算局地范围内周围格点对中心格点的高斯权重。在原有LBGM方法的基础上,提出高斯权重来更精细地表示局地范围内格点间的相关性,从而提高对流可分辨尺度集合预报的有效性。
-
公开(公告)号:CN117237677B
公开(公告)日:2024-03-26
申请号:CN202311518546.1
申请日:2023-11-15
申请人: 南京信息工程大学 , 无锡学院 , 南京气象科技创新研究院 , 中国人民解放军国防科技大学
IPC分类号: G06V10/74 , G01W1/10 , G06N3/0464 , G06N3/0475 , G06N3/094 , G06N3/0455 , G06T7/62 , G06T7/60 , G06T7/73
摘要: 本发明公开了一种基于深度学习的强降水空间整体相似度的降水预报订正方法,包括以下步骤:(1)利用YOLOv5对降水属性进行识别;(2)建立基于GAN的降水预报订正模型;(3)建立基于GAN且融合降水空间特征的强降水订正模型O‑GAN;(4)将测试期的数值模式预报数据代入模型O‑GAN,生成后处理之后的降水预报;本发明有效提高了传统仅优化逐点误差模型的订正技巧;实现了从降水图片到降水雨团空间属性的“端到端”输出,提高客观识别效率;避免了传统逐点订正模型可能出现的预报模糊化问题,同时能够有效捕捉强降水特征,提高降水预报准确率。
-
公开(公告)号:CN117233870B
公开(公告)日:2024-01-23
申请号:CN202311518550.8
申请日:2023-11-15
申请人: 南京信息工程大学 , 无锡学院 , 南京气象科技创新研究院 , 中国人民解放军国防科技大学
IPC分类号: G01W1/10 , G06F30/27 , G06F18/214 , G06F119/02
摘要: 本发明公开了一种基于多气象要素的短临降水集合预报及降尺度方法,包括以下步骤:(1)收集自动气象站逐10分钟站点观测数据;生成格点场数据(2)基于格点场数据,建立用于深度学习模型训练的标准气象序列数据集,并进行归一化处理;(3)构建耦合卷积神经网络‑循环神经网络‑对抗生成神经网络的深度学习模型,利用标准气象序列数据集针对降水进行训练,并通过在网络中增加噪声,生成集合预报;(4)利用超分辨率对生成的降水预报进行降尺度,获得高时空分辨率的短临降水集合预报;本发明将卷积神经网络、循环神经网络与对抗生成神经网络结合,提高了模型的预报真实性;利用超分辨率技术,提高降水预报准确率。
-
公开(公告)号:CN117237677A
公开(公告)日:2023-12-15
申请号:CN202311518546.1
申请日:2023-11-15
申请人: 南京信息工程大学 , 无锡学院 , 南京气象科技创新研究院 , 中国人民解放军国防科技大学
IPC分类号: G06V10/74 , G01W1/10 , G06N3/0464 , G06N3/0475 , G06N3/094 , G06N3/0455 , G06T7/62 , G06T7/60 , G06T7/73
摘要: 本发明公开了一种基于深度学习的强降水空间整体相似度的降水预报订正方法,包括以下步骤:(1)利用YOLOv5对降水属性进行识别;(2)建立基于GAN的降水预报订正模型;(3)建立基于GAN且融合降水空间特征的强降水订正模型O‑GAN;(4)将测试期的数值模式预报数据代入模型O‑GAN,生成后处理之后的降水预报;本发明有效提高了传统仅优化逐点误差模型的订正技巧;实现了从降水图片到降水雨团空间属性的“端到端”输出,提高客观识别效率;避免了传统逐点订正模型可能出现的预报模糊化问题,同时能够有效捕捉强降水特征,提高降水预报准确率。
-
公开(公告)号:CN117233870A
公开(公告)日:2023-12-15
申请号:CN202311518550.8
申请日:2023-11-15
申请人: 南京信息工程大学 , 无锡学院 , 南京气象科技创新研究院 , 中国人民解放军国防科技大学
IPC分类号: G01W1/10 , G06F30/27 , G06F18/214 , G06F119/02
摘要: 本发明公开了一种基于多气象要素的短临降水集合预报及降尺度方法,包括以下步骤:(1)收集自动气象站逐10分钟站点观测数据;生成格点场数据(2)基于格点场数据,建立用于深度学习模型训练的标准气象序列数据集,并进行归一化处理;(3)构建耦合卷积神经网络‑循环神经网络‑对抗生成神经网络的深度学习模型,利用标准气象序列数据集针对降水进行训练,并通过在网络中增加噪声,生成集合预报;(4)利用超分辨率对生成的降水预报进行降尺度,获得高时空分辨率的短临降水集合预报;本发明将卷积神经网络、循环神经网络与对抗生成神经网络结合,提高了模型的预报真实性;利用超分辨率技术,提高降水预报准确率。
-
公开(公告)号:CN117236201B
公开(公告)日:2024-02-23
申请号:CN202311525721.X
申请日:2023-11-16
申请人: 南京信息工程大学 , 无锡学院 , 南京气象科技创新研究院 , 中国人民解放军国防科技大学
IPC分类号: G06F30/27 , G01W1/10 , G06N3/0455 , G06N3/048 , G06N3/08
摘要: 本发明公开了一种基于Diffusion和ViT的降尺度方法,包括以下步骤:S1建立低分辨率数值模式降水预报与高分辨率降水观测样本,并进行预处理;S2构建Diffusion‑Vision‑Transformer降水预报模型;S3训练模型,直至Diffusion‑Vision‑Transformer的误差收敛,保存模型并进行预测;本发明通过利用Vision Transformer模型代替原始Diffusion模型中的U‑Net结构,大幅提高模型的训练效率,减低模型用于预测的时间。
-
-
-
-
-
-
-