一种基于智能眼镜的绕机检查方法及系统

    公开(公告)号:CN110108719A

    公开(公告)日:2019-08-09

    申请号:CN201910419922.9

    申请日:2019-05-20

    IPC分类号: G01N21/88

    摘要: 本发明公开了一种基于智能眼镜的绕机检查方法及系统,包括:由使用者佩戴智能眼镜按照预定检查路线依次采集航空器第一待检查部位的图像数据并上传至服务器;服务器将接收的图像数据进行特征对比,得到当前检查部位的检查结果,并将所述检查结果传输至智能眼镜;智能眼镜接收所述检查结果,并语音播报,当该检查结果与人工检查结果匹配时,提示使用者前往下一个检查部位继续检查;智能眼镜将采集的所有数据上传至服务器。该方法通过佩戴智能眼镜进行辅助检查,最大程度的降低工作人员经验不足、光照不足、光线不足等外部条件对检查结果和检查时间的影响,设置配套的服务器系统减轻检查人员的工作负荷,提高检查效率、保证飞行安全性。

    一种飞机着陆的动态时间间隔计算方法与系统

    公开(公告)号:CN112233462B

    公开(公告)日:2022-03-25

    申请号:CN202011069585.4

    申请日:2020-09-30

    IPC分类号: G08G5/02

    摘要: 本发明公开了一种飞机着陆的动态时间间隔计算方法与系统,该方法通过确定飞机着陆阶段所形成的尾涡危险区的边界范围,根据所述尾涡危险区的边界范围以及尾涡耗散特性参数建立飞机着陆阶段的尾涡运动时间计算方程,在结合飞机平均跑道着陆占用时间以及前后飞机的飞行速度,确定出关于前后飞机类型、飞行速度的飞机着陆的动态时间间隔计算方法,利用该方法进行飞机着陆的管制指挥,能够有效缩短强逆风条件下的前后机型组合之间的时间间隔,减小了逆风带来的着陆损失率、提高机场跑道的运行效率和利用率。

    一种基于神经网络的尾涡识别方法

    公开(公告)号:CN112488159A

    公开(公告)日:2021-03-12

    申请号:CN202011269486.0

    申请日:2020-11-13

    摘要: 本发明涉及航空技术领域,特别涉及一种基于神经网络的尾涡识别方法。方法步骤包括:S1,获取尾涡探测激光雷达数据;S2,根据激光雷达数据计算径向速度极差数组、角度速度极差数组和平均背景风场速度;S3,提取出径向速度极差数组中的最大值作为数组的径向速度极差特征参数,以及提取出角度速度极差数组中的最大值作为数组的角度速度极差特征参数;S4,将数组的径向速度极差特征参数、数组的角度速度极差特征参数和平均背景风场速度代入预先训练好的尾涡识别神经网络模型中,得出有尾涡或无尾涡的判定。由于采用激光雷达探测数据进行尾涡识别,识别模型迭代次数相对较少,识别效果比较好,运行速度更快。

    一种飞机着陆的动态时间间隔计算方法与系统

    公开(公告)号:CN112233462A

    公开(公告)日:2021-01-15

    申请号:CN202011069585.4

    申请日:2020-09-30

    IPC分类号: G08G5/02

    摘要: 本发明公开了一种飞机着陆的动态时间间隔计算方法与系统,该方法通过确定飞机着陆阶段所形成的尾涡危险区的边界范围,根据所述尾涡危险区的边界范围以及尾涡耗散特性参数建立飞机着陆阶段的尾涡运动时间计算方程,在结合飞机平均跑道着陆占用时间以及前后飞机的飞行速度,确定出关于前后飞机类型、飞行速度的飞机着陆的动态时间间隔计算方法,利用该方法进行飞机着陆的管制指挥,能够有效缩短强逆风条件下的前后机型组合之间的时间间隔,减小了逆风带来的着陆损失率、提高机场跑道的运行效率和利用率。

    一种基于自适应网格的航空器尾涡CFD计算方法及系统

    公开(公告)号:CN112182762A

    公开(公告)日:2021-01-05

    申请号:CN202011041655.5

    申请日:2020-09-28

    摘要: 本发明公开了一种基于自适应网格的航空器尾涡CFD计算方法及系统,包括:以航空器飞行方向为x轴,建立航空器的初始尾涡三维网格模型;采用弹簧比拟方法对x方向上的网格面进行自适应计算,得到x方向上的自适应网格节点的坐标;采用等弧分布律方法对y、z方向上的网格面进行自适应计算,得到y、z方向的自适应网格节点的坐标;以建立航空器的自适应尾涡三维网格模型,再利用该网格进行CDF计算。本发明针对于航空器尾涡x、y、z方向上的气流性质选取了适应性的自适应算法进行降维自适应计算,得到了重构后自适应航空器尾涡网格模型,有效提高了航空器尾涡网格模型的精度,从而能够在后续CDF计算中得到高精度的速度分布图和涡量矢量图。

    一种用于航空应急的起落架上位锁结构

    公开(公告)号:CN111169624A

    公开(公告)日:2020-05-19

    申请号:CN202010165650.7

    申请日:2020-03-11

    IPC分类号: B64C25/30

    摘要: 本发明涉及航空器应急技术领域,具体涉及一种用于航空应急的起落架上位锁结构,包括锁钩和止推连杆,所述锁钩与所述止推连杆相连接,还包括上连杆、下连杆和伸缩装置,所述上连杆的一端用于与机身铰接,所述上连杆与所述机身铰接的铰点为第一铰点,所述上连杆的另一端与所述下连杆铰接,所述上连杆与所述下连杆铰接的铰点为第二铰点,所述下连杆与所述止推连杆相连接,所述伸缩装置的一端用于与机身固定连接,所述伸缩装置的另一端连接于所述第二铰点,所述伸缩装置能够推动所述第二铰点移动,使得所述下连杆相较于所述第二铰点转动;由于设有伸缩装置,在液压系统失效时,利用伸缩装置完成应急解锁,提升了飞机降落的安全性和可靠性。

    一种航空器失事后应急救援搜寻区域可视化方法

    公开(公告)号:CN110189411A

    公开(公告)日:2019-08-30

    申请号:CN201910507443.2

    申请日:2019-06-12

    IPC分类号: G06T17/05 B64D47/00

    摘要: 本发明公开了应急救援领域的一种航空器失事后应急救援搜寻区域可视化方法。包括:1,根据航空器失事前最后的ADS-B信息,确定无人机首次搜索区域;2,根据首次搜索区域的地貌特征,确定无人机的机型和无人机搭载的倾斜摄影相机的参数;3,搭载倾斜摄影相机和信号传输设备的无人机按照预设的路径飞行,同时,倾斜摄影相机采集倾斜摄影数据,信号传输设备实时传输倾斜摄影数据;4,构建具有地理位置信息的三维空间模型。本发明将无人机与倾斜摄影相机进行组合,搭载高清相机,获取航空器失事区域多角度地形纹理影像信息,打破了正射影像只能从垂直角度拍摄的限制,扩大了拍摄角度,并能实时建立航空器失事区域三维模型。

    一种用于航空应急的起落架上位锁结构

    公开(公告)号:CN111169624B

    公开(公告)日:2024-05-28

    申请号:CN202010165650.7

    申请日:2020-03-11

    IPC分类号: B64C25/30

    摘要: 本发明涉及航空器应急技术领域,具体涉及一种用于航空应急的起落架上位锁结构,包括锁钩和止推连杆,所述锁钩与所述止推连杆相连接,还包括上连杆、下连杆和伸缩装置,所述上连杆的一端用于与机身铰接,所述上连杆与所述机身铰接的铰点为第一铰点,所述上连杆的另一端与所述下连杆铰接,所述上连杆与所述下连杆铰接的铰点为第二铰点,所述下连杆与所述止推连杆相连接,所述伸缩装置的一端用于与机身固定连接,所述伸缩装置的另一端连接于所述第二铰点,所述伸缩装置能够推动所述第二铰点移动,使得所述下连杆相较于所述第二铰点转动;由于设有伸缩装置,在液压系统失效时,利用伸缩装置完成应急解锁,提升了飞机降落的安全性和可靠性。

    一种基于自适应网格的航空器尾涡CFD计算方法及系统

    公开(公告)号:CN112182762B

    公开(公告)日:2022-10-11

    申请号:CN202011041655.5

    申请日:2020-09-28

    摘要: 本发明公开了一种基于自适应网格的航空器尾涡CFD计算方法及系统,包括:以航空器飞行方向为x轴,建立航空器的初始尾涡三维网格模型;采用弹簧比拟方法对x方向上的网格面进行自适应计算,得到x方向上的自适应网格节点的坐标;采用等弧分布律方法对y、z方向上的网格面进行自适应计算,得到y、z方向的自适应网格节点的坐标;以建立航空器的自适应尾涡三维网格模型,再利用该网格进行CDF计算。本发明针对于航空器尾涡x、y、z方向上的气流性质选取了适应性的自适应算法进行降维自适应计算,得到了重构后自适应航空器尾涡网格模型,有效提高了航空器尾涡网格模型的精度,从而能够在后续CDF计算中得到高精度的速度分布图和涡量矢量图。