一种基于Faster R-CNN的管道故障检测方法

    公开(公告)号:CN112329588B

    公开(公告)日:2024-01-05

    申请号:CN202011188928.9

    申请日:2020-10-30

    摘要: 本发明公开了一种基于Faster R‑CNN的管道故障检测方法,将漏磁数据样本预处理后转变为伪彩色图像样本,标记目标类别及位置,构建带标记的样本集;构建Faster R‑CNN网络及SimCLR网络,使两者特征提取卷积层结构相同;通过自监督方式生成预训练网络模型,然后用预训练网络模型初始化Faster R‑CNN网络特征提取部分卷积层网络参数;采用带标记的样本集训练Faster R‑CNN网络;设漏磁数据预处理后的数据为Vs,将Vs转为伪彩色图像并输至训练完的Faster R‑CNN中,生成目标位置信号Sf及类别信号;设Vs’为Sf与Vs叠加后生成的漏磁数据,将Vs更新为Vs’,经n次迭代后,得到最终的目标位置(56)对比文件CN 110146589 A,2019.08.20CN 110568416 A,2019.12.13CN 110633759 A,2019.12.31CN 111062286 A,2020.04.24CN 111831872 A,2020.10.27US 2006170942 A1,2006.08.03US 2013031130 A1,2013.01.31US 2014204120 A1,2014.07.24US 2020210826 A1,2020.07.02US 5982990 A,1999.11.09WO 2019136946 A1,2019.07.18WO 2020181685 A1,2020.09.17刘金海等“.基于漏磁内检测的自监督缺陷检测方法”《.仪器仪表学报》.2020,第41卷(第9期),第180-187页.路建方等“.基于灰度分层的FPGA红外图像伪彩色实时化研究”《.红外技术》.2013,第35卷(第5期),第284-288页.Mingrui Fu等“.Anomaly detection ofcomplex MFL measurements using low-rankrecovery in pipeline transportationinspection”《.IEEE Transactions onInstrumentation and Measurement》.2020,第69卷(第9期),第6776-6786页.B.Abidi等.“Screener Evaluation ofPseudo-Colored Single Energy X-rayLuggage Images”《.IEEE Computer SocietyConference on Computer Vision and PatternRecognition》.2006,第1-12页.