一种基于机器视觉的马铃薯缺陷检测识别系统设计

    公开(公告)号:CN106872473A

    公开(公告)日:2017-06-20

    申请号:CN201710092029.0

    申请日:2017-02-21

    Abstract: 本发明公开一种基于机器视觉的马铃薯缺陷检测识别系统设计。其特征是在ZYNQ平台上使用嵌入式Linux系统的机器视觉库Open CV对缺陷马铃薯进行识别和分类,通过提取绿皮、干腐、结痂及机械损伤缺陷马铃薯的特征因子,分析变量缺陷因子的R、G、B离散程度,实现马铃薯表面缺陷的检测识别,算法精准度大大提高。将小波变换运用到马铃薯薯形分析检测上,提取马铃薯椭圆半径并作归一化处理,通过 RBF神经网络进行分级,提高了分级识别缺陷马铃薯的效率和精度;使用FPGA对马铃薯图像进行预处理,并对Open CV中的算法并行加速处理,计算速度和算法效率方面显著提高。测试结果显示,与现有的基于软件图像处理的缺陷马铃薯识别分类技术相比较,新方法基于硬件结构平台,创新和优化图像处理算法,处理速度和算法效率上都有很大的提高,理论和实验表明本发明在实际中对缺陷马铃薯的识别分类有较为满意的检测精度和速度。对马铃薯加工产业具有很深的意义。

Patent Agency Ranking