-
公开(公告)号:CN119474489A
公开(公告)日:2025-02-18
申请号:CN202510068033.8
申请日:2025-01-16
Applicant: 中国铁道科学研究院集团有限公司电子计算技术研究所 , 北京交通大学 , 中国铁道科学研究院集团有限公司 , 中国国家铁路集团有限公司
IPC: G06F16/9035 , G06F16/9038 , G06N20/00
Abstract: 本申请公开了一种基于联邦学习的推荐方法、装置、设备和存储介质,用于提高推荐系统的公平性。本申请接收目标对象上传的目标属性;基于目标属性对目标对象进行分组,得到群体;针对每个群体基于目标属性的属性值对目标对象进行分组,得到子群体;针对每个子群体,将子群体对应的模型参数集发送给子群体中的每个目标对象;以使目标对象根据接收到的模型参数集本地模型进行训练;本地模型用于执行推荐操作。用户可以选择自己期望的敏感属性,根据不同的敏感属性构建不同的群体,并根据群体中的不同取值来构建子群体,针对每个子群体均设置了对应的模型参数集,进而可以保证训练得到的本地模型更加的准确,可以保证公平性的同时提供较高的推荐性能。
-
公开(公告)号:CN116070698A
公开(公告)日:2023-05-05
申请号:CN202211684648.6
申请日:2022-12-27
Applicant: 北京交通大学 , 中国铁道科学研究院集团有限公司电子计算技术研究所
IPC: G06N3/098 , G06N3/0455
Abstract: 本发明提供一种基于自编码器的单分类联邦学习方法及系统,属于联邦学习技术领域,在数据预处理阶段,利用预训练模型进行原始数据的特征提取和分析;在训练阶段,客户端按照数据标签分别使用自编码器完成单分类模型的训练,服务器根据标签对单分类模型进行分类聚合,并将聚合后的模型按标签重新下发给客户端;在预测阶段,基于集成学习整合多个单分类专家模型和预训练模型的输出,以确定预测结果。本发明提取出不同标签数据的关键特征,对客户端本地的数据类别没有要求,并且可以抑制客户端模型间的离散程度,提高全局模型的性能,能够在保护客户端隐私的情况下有效应对各种Non‑IID情况。此外训练过程中的异步聚合更新还可以提高训练过程中的通信效率。
-
公开(公告)号:CN117010026B
公开(公告)日:2024-04-09
申请号:CN202310797647.0
申请日:2023-06-30
Applicant: 北京交通大学
Abstract: 本发明提供了一种基于联邦知识网络的异常人物关系检测方法。该方法包括:可信第三方生成公钥、私钥和计算密钥,各个社区监控终端提取图像中的人脸特征,将利用公钥加密后的人脸特征对发送给中心服务器,中心服务器在密文条件下计算人脸特征对之间的欧式距离,利用可信第三方构建全局人物关系知识网络;社区监控终端捕获图像并检测亲密关系,将加密的待查询人脸特征对发送给服务器,服务器计算待查询人脸特征对与全局人物关系知识网络中人脸特征对之间的距离,利用可信第三方判断是否存在人员异常关系。本发明方法通过密钥分发、知识网络构建和异常关系检测实现了有效的关系识别和异常监测,有助于保护社区监控终端成员的安全与隐私。
-
公开(公告)号:CN115907029B
公开(公告)日:2023-07-21
申请号:CN202211391958.9
申请日:2022-11-08
Applicant: 北京交通大学
Abstract: 本发明提供一种面向联邦学习投毒攻击的防御方法及系统,属于网络安全技术领域,在每轮联邦训练开始阶段将全局模型传输给各个参与方;其中,在第一轮联邦训练时初始化全局模型;利用接收到的参数更新后的全局模型,聚合新的全局模型;其中,参与方基于本地数据和初始化全局模型进行规定轮次的本地训练,进行全局模型参数的更新。本发明计算每一层模型更新的偏差和整体模型更新的偏差,将超过阈值的模型更新偏差的数量作为异常得分,筛选异常得分最小的参与方的模型更新进行聚合,实现了比仅考虑全部参数的距离更细粒度的筛选,筛选结果的数量基于更新参数的异常程度,保证了模型的收敛速度和准确率,同时能有效地应对目标性和非目标性的投毒攻击。
-
公开(公告)号:CN118233190A
公开(公告)日:2024-06-21
申请号:CN202410387088.0
申请日:2024-04-01
Applicant: 北京交通大学
IPC: H04L9/40 , G06N3/098 , G06F18/214
Abstract: 本发明提供一种联邦推荐无目标投毒攻击防御方法、装置和系统,其中方法包括:服务器随机初始一组用户嵌入以近似良性用户嵌入分布;服务器依据近似的用户嵌入组及不同用户上传的更新信息,依次计算项目的推荐评分、评分变化速度、项目统计频数,并由此推断可能的流行项目;服务器采用“多轮综合评价”原则,依据用户与全局模型近次在流行项目上的评分行为一致性共同量化其在本轮的贡献值;服务器计算动态阈值并据此剔除贡献小于这一阈值的异常用户;服务器将剩余用户上传的梯度作为正常梯度参与后续聚合更新,并将聚合更新后的结果作为新一轮参数发送至用户;重复该过程直至模型收敛。本发明有效提高了联邦推荐模型对无目标投毒攻击的抵抗能力。
-
公开(公告)号:CN116305238A
公开(公告)日:2023-06-23
申请号:CN202211662084.6
申请日:2022-12-23
Applicant: 北京交通大学
Abstract: 本发明提供一种联邦学习后门攻击检测方法及系统,属于网络数据安全技术领域,在联邦学习系统中,攻击者向系统中注入虚假用户,攻击者基于当前接收到的全局模型并利用所有恶意用户的正常样本优化后门触发器触发器。优化目标希望最小化嵌入后门触发器样本在全局模型上的预测损失;攻击者接收到触发器并将触发器嵌入到本地数据集中,攻击者利用篡改后的数据进行本地模型训练。本发明攻击者在进行模型对于训练样本学习同时,最小化恶意模型与正常模型之间的距离,控制由于嵌入触发器引起的模型偏差;攻击者通过这两种方法的联合作用,控制由于嵌入后门触发器引起的恶意模型与正常模型之间的偏差,增强后门攻击的隐蔽性绕过多种防御方法。
-
公开(公告)号:CN116049816A
公开(公告)日:2023-05-02
申请号:CN202310027342.1
申请日:2023-01-09
Applicant: 北京交通大学 , 深信服科技股份有限公司
Abstract: 本发明提供了一种基于区块链可验证安全的联邦学习方法。该方法包括:各个参与方从区块链上下载全局模型,在本地进行训练得到本地模型,将本地模型数据上传至区块链,参与方从区块链上下载其余参与方本轮上传的本地模型,对其余参与方的本地模型进行检测和评分,将评分结果上传至区块链上;智能合约对所用参与方上传的评分结果进行统计和评分,择优选择性能较好的多个本地模型进行聚合,得到最新的全局模型,智能合约根据当前轮次的各个参与方行为进行信誉评分,将各个参与方的信誉评分结果存储在区块链上。本发明方法通过让参与方依据欧氏距离计算模型相似度,可以同时检测出联邦学习中的多种投毒攻击,可以最大程度保证全局模型的性能表现。
-
公开(公告)号:CN117010026A
公开(公告)日:2023-11-07
申请号:CN202310797647.0
申请日:2023-06-30
Applicant: 北京交通大学
Abstract: 本发明提供了一种基于联邦知识网络的异常人物关系检测方法。该方法包括:可信第三方生成公钥、私钥和计算密钥,各个社区监控终端提取图像中的人脸特征,将利用公钥加密后的人脸特征对发送给中心服务器,中心服务器在密文条件下计算人脸特征对之间的欧式距离,利用可信第三方构建全局人物关系知识网络;社区监控终端捕获图像并检测亲密关系,将加密的待查询人脸特征对发送给服务器,服务器计算待查询人脸特征对与全局人物关系知识网络中人脸特征对之间的距离,利用可信第三方判断是否存在人员异常关系。本发明方法通过密钥分发、知识网络构建和异常关系检测实现了有效的关系识别和异常监测,有助于保护社区监控终端成员的安全与隐私。
-
公开(公告)号:CN116049816B
公开(公告)日:2023-07-25
申请号:CN202310027342.1
申请日:2023-01-09
Applicant: 北京交通大学 , 深信服科技股份有限公司
Abstract: 本发明提供了一种基于区块链可验证安全的联邦学习方法。该方法包括:各个参与方在本地训练模型,将得到的本地模型上传至区块链,参与方从区块链上下载其余参与方上传的本地模型,对其本地模型通过模型相似度算法检测并依据本地数据评分,确保本地模型不会受到攻击者的投毒攻击,将评分结果上传至区块链上;智能合约对所有参与方上传的评分结果进行统计和评分,择优选择精度较高的多个本地模型聚合,得到最新的全局模型,智能合约根据当前轮次的各个参与方行为进行信誉评分,将信誉评分结果存储在区块链上。本发明方法通过让参与方依据欧氏距离计算模型相似度,可以同时检测出联邦学习中的多种投毒攻击,可以最大程度保证系统的鲁棒性和可靠性。
-
公开(公告)号:CN118540096A
公开(公告)日:2024-08-23
申请号:CN202410421446.5
申请日:2024-04-09
Applicant: 北京交通大学
Inventor: 王伟 , 郝玉蓉 , 刘吉强 , 李超 , 段莉 , 许向蕊 , 陈国荣 , 刘鹏睿 , 吕晓婷 , 陈政 , 刘敬楷 , 振昊 , 韩昫 , 刘冲 , 胡福强 , 祝咏升 , 代娇
IPC: H04L9/40 , H04L41/16 , G06F16/9535 , G06N3/098 , G06N20/00
Abstract: 本发明公开了一种面向联邦推荐的有目标投毒攻击防御方法及系统,包括:服务器随机选取预设比例的客户端参加模型训练;服务器连续记录不同用户在每一轮的更新项目模式;服务器通过识别良性用户在训练期间更新项目的两种模式,动态剔除不满足前述模式条件的异常用户;服务器将剩余用户上传的梯度作为正常梯度参与后续聚合更新,并将聚合更新后的结果作为新一轮参数发送至客户端;重复该过程直至模型收敛。本发明能够在训练过程中动态检测来自客户端上传的模型参数更新和交互项目更新模式,通过识别良性用户在训练期间更新项目的两种模式,针对性的对参与联邦推荐训练的异常用户进行检测并剔除,可以有效减轻有目标投毒攻击对联邦推荐系统的损害。
-
-
-
-
-
-
-
-
-