一种砷化镓/石墨烯复合超材料太赫兹宽带吸收器

    公开(公告)号:CN113809544A

    公开(公告)日:2021-12-17

    申请号:CN202111126379.7

    申请日:2021-09-26

    Abstract: 一种砷化镓/石墨烯复合动态可调宽带太赫兹超材料吸收器,属于超材料及电磁功能材料领域。该吸收器分为上下两个部分,上部分由砷化镓(GaAs)/石墨烯超材料层,介电层与半导体GaAs层三部分组成;下部分包括十字石墨烯层,介电层和底层金属反射层三部分。金属反射层为一层连续的金属薄膜,厚度大于工作太赫兹波的趋肤深度;介质层为二氧化硅材料。顶层图形由石墨烯十字与四个大小相同的GaAs方框锁构成;第四层为与顶层尺寸不同的石墨烯十字阵列。本发明通过对石墨烯与GaAs层的尺寸优化与电压调控,实现对垂直入射电磁波的完全吸收。本发明结构简单且具有宽频带高吸收频率可调的特性,可用于太赫兹波段电磁波的收集和探测装置。

    一种碳微纳球结构及超级电容器的制备方法

    公开(公告)号:CN110112013B

    公开(公告)日:2021-04-16

    申请号:CN201910451363.X

    申请日:2019-05-28

    Abstract: 本发明提供了一种基于碳微纳球结构及超级电容器的制备方法,将多活性位点衬底放入微波等离子体化学气相沉积系统的反应腔体中,设置如下参数:反应腔压:10‑100torr;温度700℃‑900℃;N2流速50‑150cm3/min;H2流速20‑100cm3/min;碳源气体流速1‑20cm3/min;偏压负200‑负50V;微波功率为500‑1500W,调节设备阻抗旋钮至得到不闪烁的橙黄色辉光等离子体气体,反应1‑6h,最终得到碳微纳球材料。碳微纳米球形貌丰富,直径4‑15μm,电容性能良好,电压窗口为‑0.5V‑‑0.5V时,可到达116mF/cm2。采用石墨类衬底作为集流体,增强材料电容性能,提升材料与衬底接触稳定性,原材料廉价易得,方法简单,性能稳定,具有高重复性。

    一种碳微纳球结构及超级电容器的制备方法

    公开(公告)号:CN110112013A

    公开(公告)日:2019-08-09

    申请号:CN201910451363.X

    申请日:2019-05-28

    Abstract: 本发明提供了一种基于碳微纳球结构及超级电容器的制备方法,将多活性位点衬底放入微波等离子体化学气相沉积系统的反应腔体中,设置如下参数:反应腔压:10-100torr;温度700℃-900℃;N2流速50-150cm3/min;H2流速20-100cm3/min;碳源气体流速1-20cm3/min;偏压负200-负50V;微波功率为500-1500W,调节设备阻抗旋钮至得到不闪烁的橙黄色辉光等离子体气体,反应1-6h,最终得到碳微纳球材料。碳微纳米球形貌丰富,直径4-15μm,电容性能良好,电压窗口为-0.5V--0.5V时,可到达116mF/cm2。采用石墨类衬底作为集流体,增强材料电容性能,提升材料与衬底接触稳定性,原材料廉价易得,方法简单,性能稳定,具有高重复性。

    一种稀土氟化物发光材料的高效抗氧化退火方法

    公开(公告)号:CN104531152B

    公开(公告)日:2016-09-14

    申请号:CN201410805371.7

    申请日:2014-12-21

    Abstract: 一种稀土氟化物发光材料的高效抗氧化退火方法属于固体发光材料领域。其特征在于由以下步骤组成:将稀土氟化物荧光材料进行研磨,过筛网后直接压制成素坯体;素坯体置于氧化铝坩埚中,用石英砂将素坯体掩埋并将氧化铝坩埚填满;在另一个更大的氧化铝坩埚底部铺满活性炭粉,将之前盖好的装有素坯体的坩埚置于大坩埚中,大坩埚的其他空隙用活性炭填满,盖好盖子;装好的大坩埚置于马氏炉中以每小时160℃‑200℃的升温速率进行升温,达到退火温度后进行退火处理,最后随炉降温至室温。本发明氟化物转光材料结晶性良好,并且具有较强的上转换性能,有效减少了氟化物被氧化的几率以及杂相的生成,改善了氟化物稀土材料的加工性能,降低了制造成本。

    一种稀土氟化物发光材料的高效抗氧化退火方法

    公开(公告)号:CN104531152A

    公开(公告)日:2015-04-22

    申请号:CN201410805371.7

    申请日:2014-12-21

    Abstract: 一种稀土氟化物发光材料的高效抗氧化退火方法属于固体发光材料领域。其特征在于由以下步骤组成:将稀土氟化物荧光材料进行研磨,过筛网后直接压制成素坯体;素坯体置于氧化铝坩埚中,用石英砂将素坯体掩埋并将氧化铝坩埚填满;在另一个更大的氧化铝坩埚底部铺满活性炭粉,将之前盖好的装有素坯体的坩埚置于大坩埚中,大坩埚的其他空隙用活性炭填满,盖好盖子;装好的大坩埚置于马氏炉中以每小时160℃-200℃的升温速率进行升温,达到退火温度后进行退火处理,最后随炉降温至室温。本发明氟化物转光材料结晶性良好,并且具有较强的上转换性能,有效减少了氟化物被氧化的几率以及杂相的生成,改善了氟化物稀土材料的加工性能,降低了制造成本。

    一种调节CuAlO2陶瓷电导率的方法及CuAl1-xYxO2陶瓷制备方法

    公开(公告)号:CN104496460A

    公开(公告)日:2015-04-08

    申请号:CN201410669987.6

    申请日:2014-11-20

    Abstract: 一种调节CuAlO2陶瓷电导率的方法及CuAl1-xYxO2陶瓷制备方法,属于陶瓷技术领域。通过钇部分掺杂取代CuAlO2中的Al的方法来调节CuAlO2陶瓷电导率,钇部分掺杂取代CuAlO2得到化合式为CuAl1-xYxO2的物质,其中0.01≤x≤0.10。制备方法:按化学计量比称量原料;将原料放入球磨罐中球磨;将粉体放入坩埚中煅烧,煅烧温度时1100℃,然后进行二次球磨、烘干;将研磨得到的粉体压制成坯体,得到的坯体在炉子以560℃-600℃排胶、以1150℃-1250℃的温度进行烧结。通过简单的钇掺杂就能实现CuAlO2材料的电导率的改变。

Patent Agency Ranking