一种高精度调速前后自平衡独轮代步车

    公开(公告)号:CN103183088B

    公开(公告)日:2015-03-25

    申请号:CN201310129811.7

    申请日:2013-04-15

    IPC分类号: B62K11/00

    摘要: 本发明属于交通工具领域,公布了一种高精度调速前后自平衡独轮代步车,包括车轮、轮毂电机、踏板、支架、可伸缩连杆、调速转把、驱动模块和电源模块,还包括控制模块、高精度测速模块和姿态测量模块。独轮代步车的速度通过转动右手把调整,左右方向的平衡靠人体自身的平衡能力控制,前后方向上的平衡及速度控制,由姿态平衡控制量和速度控制量进行叠加得到的综合控制量经驱动模块驱动轮毂电机实现。本发明的速度测量模块由于增加了同轴齿轮和加速齿轮,使测速精度大大提高,解决了独轮车在低速运行时速度和位置信息测量精度难以满足要求的问题,实现了独轮代步车高精度的前后方向姿态自平衡控制和速度控制。

    一种仿生智能控制方法
    2.
    发明公开

    公开(公告)号:CN103886367A

    公开(公告)日:2014-06-25

    申请号:CN201410101272.0

    申请日:2014-03-18

    IPC分类号: G06N3/02

    摘要: 本发明涉及一种仿生智能控制方法。针对传统的机器人控制方法所能达到的智能水平有限,机器人无法自主地适应未知环境,难以从简单经验中获取完成复杂任务的能力,无法以自学习的方式完成任务等问题,本发明从仿生角度模拟生物的感觉运动神经系统,并将操作条件反射机理融入感觉运动系统的设计中。本发明以复制感觉运动系统的方式重现了生物运动神经认知,有利于模拟生物的认知机制,进而提高机器人认知水平;加入了操作条件反射机能,由此解释了感觉运动系统中“感知”及“运动”之间相互影响的反馈闭环关系,使得系统能表现出类似生物的自学习行为,提高了机器人的智能水平。

    一种基于电磁效应的力矩产生装置

    公开(公告)号:CN102832782A

    公开(公告)日:2012-12-19

    申请号:CN201210272457.9

    申请日:2012-08-01

    IPC分类号: H02K51/00

    摘要: 一种基于电磁效应的力矩产生装置,属于电磁力矩式力矩发生器,其特征在于,包括:外壳、磁铁组、电枢绕组、后轴承、后端盖、电机、负载。本发明利用电磁感应原理,使用电机驱动电枢绕组在磁场中转动产生一个与电机驱动方向反向的电磁转矩,同时磁铁组受到一个与电枢绕组等大反向的反电磁转矩并传递到欠驱动系统上,为其提供所需力矩。特别地本装置提供的力矩与速度项成正比,显著降低了控制难度。本发明系统设计简单可靠,结构清晰明了,可以应用于独轮机器人、卫星、航天飞机和导弹的姿态调整,亦可应用于直升飞机或蝶形飞行器反扭矩克服等领域。

    一种变惯量反作用飞轮
    4.
    发明授权

    公开(公告)号:CN104391505B

    公开(公告)日:2017-02-22

    申请号:CN201410395768.3

    申请日:2014-08-13

    IPC分类号: G05D1/08

    摘要: 本发明涉及一种变惯量反作用飞轮,包括固定齿轮箱组件、回转齿轮箱组件、飞轮组件,固定齿轮箱组件电机I、电机II、固定齿轮箱壳体、小齿轮I、轴承I、大齿轮I、小齿轮II、大齿轮II、轴承II;回转齿轮箱组件包括回转齿轮箱壳体、传动轴、锥齿轮I、轴承III;飞轮组件包括锥齿轮II、丝杠、轴承IV、丝杠螺母、配重块、导向杆、滑动轴承、挡板和轴承V。通过控制电机I、电机II的转速来控制配重块的惯性半径和回转角加速度,以改变飞轮组件的转动惯量,从而控制系统输出的反作用力矩范围和精度。本发明可快速调节系统输出的反作用力矩范围和精度,安装和工作空间小,应用于航天器和机器人领域中,有利于航天器和机器人的小型化。

    一种欠驱动系统同轴驱动式辅助力矩发生器

    公开(公告)号:CN102820731B

    公开(公告)日:2015-05-13

    申请号:CN201210272797.1

    申请日:2012-08-01

    IPC分类号: H02K7/10 G05D1/08

    摘要: 一种欠驱动系统同轴驱动式辅助力矩发生器,属于电磁力矩式力矩发生器,其特征在于,包括:外壳1、磁铁组2、电枢绕组3、前端盖6、电机8、电机座10,负载11,外壳与欠驱动系统同轴固定连接。本发明利用电磁感应原理,使用电机驱动电枢绕组在磁场中转动产生一个与电机驱动方向反向的电磁转矩,同时磁铁组受到一个与电枢绕组等大反向的反电磁转矩并传递到欠驱动系统上,为其提供所需力矩。特别地本装置提供的力矩与速度项成正比,显著降低了控制难度而且本装置可实现两级电磁式变速。本发明系统设计简单可靠,结构清晰明了,可以应用于独轮机器人、卫星、航天飞机和导弹的姿态调整,亦可应用于直升飞机或蝶形飞行器反扭矩克服等领域。

    一种欠驱动系统外周驱动式辅助力矩发生器

    公开(公告)号:CN102810936A

    公开(公告)日:2012-12-05

    申请号:CN201210272444.1

    申请日:2012-08-01

    IPC分类号: H02K7/10 G05D1/08

    摘要: 一种欠驱动系统外周驱动式辅助力矩发生器,属于电磁力矩式力矩发生器,其特征在于,包括:外壳、磁铁组、电枢绕组、前端盖、后端盖、电机、电机支架,负载,外壳与欠驱动系统通过齿轮、凸轮或波纹配合连接。本发明利用电磁感应原理,使用电机驱动电枢绕组在磁场中转动产生一个与电机驱动方向反向的电磁转矩,同时磁铁组受到一个与电枢绕组等大反向的反电磁转矩并传递到欠驱动系统上,为其提供所需力矩。特别地本装置提供的力矩与速度项成正比,显著降低了控制难度。本发明系统设计简单可靠,结构清晰明了,可以应用于独轮机器人、卫星、航天飞机和导弹的姿态调整,亦可应用于直升飞机或蝶形飞行器反扭矩克服等领域。

    小型自平衡机器人姿态模拟器

    公开(公告)号:CN103744297B

    公开(公告)日:2016-11-23

    申请号:CN201410005737.2

    申请日:2014-01-07

    IPC分类号: G05B17/02 G05D1/02

    摘要: 本发明涉及一种小型自平衡机器人姿态模拟器,属于机器人姿态运动仿真、惯导设备检测领域;小型自平衡机器人姿态模拟器可以模拟自平衡机器人的俯仰角、航向角的变化;同时水平移动滑台和两轴转台运动的叠加亦可以模拟两轮自平衡机器人在水平面上复杂的运动姿态,包括自旋、匀速转向、机器人走“8”字;采用非线性PD双回路控制器使姿态模拟器系统稳定性增强,同时提高了控制精度;L型外框的使用,减少了系统的重力不平衡力矩、提高系统精度。

    一种复合式反作用飞轮
    8.
    发明授权

    公开(公告)号:CN103904817B

    公开(公告)日:2016-09-14

    申请号:CN201410144156.7

    申请日:2014-04-10

    IPC分类号: H02K7/02

    CPC分类号: Y02E60/16

    摘要: 本发明涉及一种复合式反作用飞轮,包括固定板、支撑板、电机固定座、减速电机、飞轮、轴承、轴承支座,其中固定板分别固定连接支撑板和轴承支座;减速电机通过电机固定座固定在支撑板上;减速电机驱动飞轮回转,飞轮另一端通过轴承固定在轴承支座上,所述的飞轮包括多个叶片、两个法兰、辐板和空心式飞轮转轴,其中叶片沿圆周均匀布置,叶片两端分别与一个法兰连接,辐板与空心式飞轮转轴固定连接,每一个叶片通过一个辐板连接,减速电机依次通过飞轮转轴、辐板驱动叶片产生惯性反作用力矩和气动反作用力矩。本发明可以有效延迟飞轮速度饱和现象的发生,具有较高的可操控性。

    基于Skinner操作条件反射原理的机器人避障导航方法

    公开(公告)号:CN103792846A

    公开(公告)日:2014-05-14

    申请号:CN201410055115.0

    申请日:2014-02-18

    IPC分类号: G05B13/04 G05D1/02

    摘要: 本发明涉及了一种基于Skinner操作条件反射原理的机器人避障导航方法。首先,建立机器人的动作集合概率,并令其符合均匀分布;然后,随机选择一个动作,计算相应的位置变化,进而根据与障碍及目标点距离计算出新位置对应的负理想度,并由此得出取向函数值,根据取向函数值按照操作条件反射理论调整动作概率分布,计算系统熵;当系统熵趋于最小值时,选择概率最大动作所指角度前行;重复学习过程,直至抵达目的地。本发明能够很好地模拟人及动物的操作条件反射行为,提高机器人的智能水平,使其具备较强的自学习、自组织、自适应能力,能够在无导师信号的情况下自主探索环境,成功避障导航。

    小型自平衡机器人姿态模拟器

    公开(公告)号:CN103744297A

    公开(公告)日:2014-04-23

    申请号:CN201410005737.2

    申请日:2014-01-07

    IPC分类号: G05B17/02 G05D1/02

    摘要: 本发明涉及一种小型自平衡机器人姿态模拟器,属于机器人姿态运动仿真、惯导设备检测领域;小型自平衡机器人姿态模拟器可以模拟自平衡机器人的俯仰角、航向角的变化;同时水平移动滑台和两轴转台运动的叠加亦可以模拟两轮自平衡机器人在水平面上复杂的运动姿态,包括自旋、匀速转向、机器人走“8”字;采用非线性PD双回路控制器使姿态模拟器系统稳定性增强,同时提高了控制精度;L型外框的使用,减少了系统的重力不平衡力矩、提高系统精度。