基于全驱理论的旋转滑翔制导飞行器姿态驾驶仪设计方法

    公开(公告)号:CN118151673A

    公开(公告)日:2024-06-07

    申请号:CN202410256307.1

    申请日:2024-03-06

    IPC分类号: G05D1/49

    摘要: 本发明公开了一种基于全驱理论的旋转滑翔制导飞行器姿态驾驶仪设计方法,包括以下步骤:建立双通道耦合旋转滑翔制导飞行器的姿态模型;设置第一扰动观测器,对角度跟踪误差进行估计;基于第一扰动观测器估计,在角度控制回路中根据参考角度命令获得虚拟角速率指令;设置第二扰动观测器,对虚拟控制律跟踪误差进行估计;基于第二扰动观测器估计,在角速率控制回路中,根据虚拟角速率指令获得鸭舵指令,采用鸭舵指令对旋转滑翔制导飞行器进行姿态控制。本发明公开的基于全驱理论的旋转滑翔制导飞行器姿态驾驶仪设计方法,可以在复杂条件下使飞行器保持理想姿态,稳定飞行。

    一种应用于旋转飞行器的自适应神经网络驾驶方法

    公开(公告)号:CN117311376B

    公开(公告)日:2024-03-01

    申请号:CN202311598763.6

    申请日:2023-11-28

    IPC分类号: G05D1/46 G05D109/28

    摘要: 本发明公开了一种应用于旋转飞行器的自适应神经网络过载驾驶方法,包括:构建旋转飞行器动态系统模型;基于旋转飞行器动态系统模型,构建慢回路控制器和快回路控制器,根据参考过载信号获取控制指令;旋转飞行器在控制指令的情况下进行飞行;其中,所述慢回路控制器,以过载信号作为输入信号,获取期望角速度,所述快回路控制器,以期望角速度作为输入信号,获取控制指令。本发明公开的应用于旋转飞行器的自适应神经网络过载驾驶方法,实现了对过载指令的精确跟踪。

    卫星拒止条件下复合制导飞行器的制导方法

    公开(公告)号:CN116880526A

    公开(公告)日:2023-10-13

    申请号:CN202310876141.9

    申请日:2023-07-17

    IPC分类号: G05D1/08 G05D1/10

    摘要: 本发明公开了一种卫星拒止条件下复合制导飞行器的制导方法,该方法中,飞行器在中制导段,基于卫星信号和姿态敏感系统获得飞行器的期望加速度,据此控制飞行器飞向目标,在此过程中,若遭遇卫星拒止,则基于上一时刻应用的卫星信号获得飞行器的期望加速度,直至重新获得实时的卫星信号,在飞行器发射预定时间后,开启激光导引头;当激光导引头捕获目标后,通过新型视线角约束制导律实时获得飞行器的期望加速度,基于飞行器的期望加速度生成舵指令,控制舵机打舵工作,控制飞行器飞向目标,并以期望视线角碰撞目标,通过该新型视线角约束制导律补偿修正由于卫星拒止导致的偏差,最终使得飞行器命中目标。

    一种时间空间协同的多飞行器抗扰动协同制导控制方法

    公开(公告)号:CN118778661A

    公开(公告)日:2024-10-15

    申请号:CN202310347403.2

    申请日:2023-04-03

    IPC分类号: G05D1/46

    摘要: 本发明公开了一种时间空间协同的多飞行器抗扰动协同制导控制方法,该方法中,在视线法向上设计了分布式空间协同制导律,可在有限时间内使多飞行器的相对视线角收敛于期望值,使多飞行器从期望的视线相对方向命中目标,同时,在视线方向上设计了分布式时间协同制导律,以便于控制多个飞行器同时命中目标;在此基础上,通过增加附加项的方式,使所设计的协同制导控制方法具有抗干扰的效果,实现了飞行器在扰动情况下的命中精度大幅提高。

    一种高机动飞行器的控制方法
    8.
    发明公开

    公开(公告)号:CN116482971A

    公开(公告)日:2023-07-25

    申请号:CN202310251302.5

    申请日:2023-03-16

    IPC分类号: G05B13/04

    摘要: 本发明公开了一种高机动飞行器的控制方法,该方法在获得舵偏信号的过程中,在动态面控制方法的框架内应用BLF‑Log进行设计,确保鲁棒性的同时保证针对攻角指令的包括超调量和稳态误差在内的攻角指令跟踪误差始终保持在约束区间内,可维持控制系统对噪声和隔离度的低敏感性,双幂次滑模趋近律可令该方法具有较快的收敛速度和更好地收敛品质;该方法具有强鲁棒性,能够有效降低干扰对飞行器控制系统的影响并可准确稳定地跟踪制导回路所产生的攻角指令,控制飞行器平稳及时产生所需过载,确保飞行器稳定飞行并最终对目标实施精确拦截。