-
公开(公告)号:CN103952629A
公开(公告)日:2014-07-30
申请号:CN201410200432.7
申请日:2014-05-13
Applicant: 北京科技大学
Abstract: 本发明属于钢铁冶金与加工技术领域,特别涉及一种中硅冷轧无取向硅钢及制造方法。其化学成分为:Si:1.5~1.7%,Al:0.2~0.3%,Mn:0.3~0.6%,Cu:0.1~0.3%,C≤0.003%,P≤0.007%,S≤0.003%,N≤0.005%,其余为铁和不可避免的杂质。生产工艺条件为:锻坯厚度为18~20mm;锻坯加热温度为1100~1150℃,轧制道次为5道次,总压下率为83~86%,每道次压下率为25~35%,保证终轧温度在950℃以上,卷取温度为550~560℃;常化退火温度为920~930℃,退火时间为20~30分钟。本发明生产工艺简单,对设备要求不高,可广泛应用于不同装备水平的冷轧无取向硅钢生产厂家,工艺通用性较强。
-
公开(公告)号:CN107587076A
公开(公告)日:2018-01-16
申请号:CN201710848080.X
申请日:2017-09-19
Applicant: 北京科技大学
IPC: C22C38/38 , C22C38/04 , C22C38/02 , C22C38/06 , C22C38/60 , C22C38/28 , C22C38/26 , C22C38/24 , C22C38/22 , C22C38/20 , C22C38/40 , C22C38/42 , C22C38/44 , C22C38/46 , C22C38/48 , C22C38/50 , C22C38/58 , C21D8/06 , F16C3/06
Abstract: 本发明属于金属材料领域,涉及一种满足重型汽车发动机曲轴用铁素体+珠光体型非调质钢组织要求的大棒材轧制工艺。该大棒材主要生产工艺流程为:连铸大方坯→加热炉加热→可逆轧机粗轧→连轧机精轧→锯切→冷床控冷→集捆→入保温坑缓冷。为了满足对轧材心部原奥氏体晶粒度、铁素体比例和组织均匀性的要求,控制方法对连铸坯加热制度、热轧变形制度、精轧温度、先共析铁素体析出温度区间冷速和入坑温度给出了明确要求。采用该控制方法后,轧材心部组织为铁素体+珠光体;原奥氏体晶粒度不低于6.0级,铁素体比例不低于25%,带状组织不大于2.0级,组织均匀,无异常粗大晶粒。从而达到了一种国际领先的重型汽车发动机非调质钢曲轴对原材料的组织要求。
-
公开(公告)号:CN103952629B
公开(公告)日:2016-01-20
申请号:CN201410200432.7
申请日:2014-05-13
Applicant: 北京科技大学
Abstract: 本发明属于钢铁冶金与加工技术领域,特别涉及一种中硅冷轧无取向硅钢及制造方法。其化学成分为:Si:1.5~1.7%,Al:0.2~0.3%,Mn:0.3~0.6%,Cu:0.1~0.3%,C≤0.003%,P≤0.007%,S≤0.003%,N≤0.005%,其余为铁和不可避免的杂质。生产工艺条件为:锻坯厚度为18~20mm;锻坯加热温度为1100~1150℃,轧制道次为5道次,总压下率为83~86%,每道次压下率为25~35%,保证终轧温度在950℃以上,卷取温度为550~560℃;常化退火温度为920~930℃,退火时间为20~30分钟。本发明生产工艺简单,对设备要求不高,可广泛应用于不同装备水平的冷轧无取向硅钢生产厂家,工艺通用性较强。
-
公开(公告)号:CN107587076B
公开(公告)日:2019-04-12
申请号:CN201710848080.X
申请日:2017-09-19
Applicant: 北京科技大学
IPC: C22C38/38 , C22C38/04 , C22C38/02 , C22C38/06 , C22C38/60 , C22C38/28 , C22C38/26 , C22C38/24 , C22C38/22 , C22C38/20 , C22C38/40 , C22C38/42 , C22C38/44 , C22C38/46 , C22C38/48 , C22C38/50 , C22C38/58 , C21D8/06 , F16C3/06
Abstract: 本发明属于金属材料领域,涉及一种满足重型汽车发动机曲轴用铁素体+珠光体型非调质钢组织要求的大棒材轧制工艺。该大棒材主要生产工艺流程为:连铸大方坯→加热炉加热→可逆轧机粗轧→连轧机精轧→锯切→冷床控冷→集捆→入保温坑缓冷。为了满足对轧材心部原奥氏体晶粒度、铁素体比例和组织均匀性的要求,控制方法对连铸坯加热制度、热轧变形制度、精轧温度、先共析铁素体析出温度区间冷速和入坑温度给出了明确要求。采用该控制方法后,轧材心部组织为铁素体+珠光体;原奥氏体晶粒度不低于6.0级,铁素体比例不低于25%,带状组织不大于2.0级,组织均匀,无异常粗大晶粒。从而达到了一种国际领先的重型汽车发动机非调质钢曲轴对原材料的组织要求。
-
公开(公告)号:CN106555114B
公开(公告)日:2018-03-13
申请号:CN201610913325.8
申请日:2016-10-19
Applicant: 北京科技大学
IPC: C22C38/04 , C22C38/02 , C22C38/60 , C22C38/06 , C22C38/20 , C22C38/22 , C22C38/24 , C22C38/26 , C22C38/28 , C22C38/18 , C22C38/38 , C22C38/48 , C22C38/50 , C22C38/46 , C22C38/44 , C22C38/42 , C22C38/58 , C21D8/00
Abstract: 本发明属于金属材料领域,涉及一种铁素体+珠光体型非调质钢曲轴锻件的贝氏体控制方法。该曲轴锻件主要生产工艺流程为:原料钢材→感应加热→两道次辊锻→闭模预锻→闭模终锻→切边→校正→控制冷却。为了系统控制贝氏体,控制方法对原料钢材的偏析和原奥氏体晶粒度、曲轴锻件的原奥氏体晶粒度、感应加热工艺和控制冷却工艺给出了明确要求。采用该控制方法后,非调质钢曲轴锻件组织为铁素体+珠光体,无贝氏体;硬度228~265HB,具有良好的力学性能和机加工性能。从而可有效避免“打刀”、“断钻头”等问题,提高曲轴合格率,降低曲轴制造成本,特别是机加工成本,满足大马力汽车发动机对曲轴越来越高的性能要求。
-
公开(公告)号:CN107587073A
公开(公告)日:2018-01-16
申请号:CN201710851972.5
申请日:2017-09-19
Applicant: 北京科技大学
Abstract: 本发明属于金属材料领域,涉及一种含钛、氮的汽车发动机曲轴用非调质钢,其化学成分质量百分比为:0.44%~0.48%C、0.25%~0.45%Si、0.82%~0.92%Mn、0.12%~0.21%Cr、0.07%~0.10%V、0.02~0.03%Ti、0.010~0.020%N、P≤0.025%、0.040~0.060%S,其余部分为Fe和正常杂质。上述成分的轧制大棒材(直径110mm)的显微组织为珠光体+铁素体,其组织较细且均匀性很好;大棒材1/2半径位置的奥氏体晶粒度可达到8.0级,心表晶粒度极差可低至0.5级。以上述大棒材为原料模锻得到曲轴,其显微组织为珠光体+晶界铁素体+晶内铁素体;曲轴主轴颈1/2半径位置的屈服强度可达到500MPa以上,抗拉强度可达到800MPa以上,室温冲击功KU2可达到20J以上;曲轴输出端横截面的硬度在240-260HB,适宜钻孔加工,可降低机加工成本。从而能够满足大棒材组织均匀性和曲轴综合力学性能的要求。
-
公开(公告)号:CN106555114A
公开(公告)日:2017-04-05
申请号:CN201610913325.8
申请日:2016-10-19
Applicant: 北京科技大学
IPC: C22C38/04 , C22C38/02 , C22C38/60 , C22C38/06 , C22C38/20 , C22C38/22 , C22C38/24 , C22C38/26 , C22C38/28 , C22C38/18 , C22C38/38 , C22C38/48 , C22C38/50 , C22C38/46 , C22C38/44 , C22C38/42 , C22C38/58 , C21D8/00
CPC classification number: C22C38/04 , C21D8/005 , C21D2211/005 , C21D2211/009 , C22C38/02 , C22C38/06 , C22C38/18 , C22C38/20 , C22C38/22 , C22C38/24 , C22C38/26 , C22C38/28 , C22C38/38 , C22C38/42 , C22C38/44 , C22C38/46 , C22C38/48 , C22C38/50 , C22C38/58 , C22C38/60
Abstract: 本发明属于金属材料领域,涉及一种铁素体+珠光体型非调质钢曲轴锻件的贝氏体控制方法。该曲轴锻件主要生产工艺流程为:原料钢材→感应加热→两道次辊锻→闭模预锻→闭模终锻→切边→校正→控制冷却。为了系统控制贝氏体,控制方法对原料钢材的偏析和原奥氏体晶粒度、曲轴锻件的原奥氏体晶粒度、感应加热工艺和控制冷却工艺给出了明确要求。采用该控制方法后,非调质钢曲轴锻件组织为铁素体+珠光体,无贝氏体;硬度228~265HB,具有良好的力学性能和机加工性能。从而可有效避免“打刀”、“断钻头”等问题,提高曲轴合格率,降低曲轴制造成本,特别是机加工成本,满足大马力汽车发动机对曲轴越来越高的性能要求。
-
-
-
-
-
-