-
公开(公告)号:CN112016675A
公开(公告)日:2020-12-01
申请号:CN202010810100.6
申请日:2020-08-13
申请人: 北京首钢自动化信息技术有限公司
摘要: 本发明涉及钢板表面缺陷检测技术领域,具体涉及一种用于钢板表面缺陷检测的CNN模型训练方法和装置。该方法包括:构建初始卷积神经网络模型;构建第一训练集;获取目标卷积神经网络模型;构建第一检测集;获取第一检测集的缺陷类别检测结果;构建第二训练集;获取辅助卷积神经网络模型;构建第二检测集;获取第二检测集的第一缺陷类别检测结果;获取第二检测集的第二缺陷类别检测结果;获取缺陷类别检测结果相同的表面缺陷图片;更新第一训练集,并利用更新后的第一训练集重新训练目标卷积神经网络模型,并重新构建第二检测集。本发明保证了训练集更新内容的准确度,整个过程全部实现计算机检测,提高了模型的迭代效率和识别精度。
-
公开(公告)号:CN112016675B
公开(公告)日:2023-12-19
申请号:CN202010810100.6
申请日:2020-08-13
申请人: 北京首钢自动化信息技术有限公司
IPC分类号: G06N3/0464 , G06N3/08 , G06T7/00
摘要: 本发明涉及钢板表面缺陷检测技术领域,具体涉及一种用于钢板表面缺陷检测的CNN模型训练方法和装置。该方法包括:构建初始卷积神经网络模型;构建第一训练集;获取目标卷积神经网络模型;构建第一检测集;获取第一检测集的缺陷类别检测结果;构建第二训练集;获取辅助卷积神经网络模型;构建第二检测集;获取第二检测集的第一缺陷类别检测结果;获取第二检测集的第二缺陷类别检测结果;获取缺陷类别检测结果相同的表面缺陷图片;更新第一训练集,并利用更新后的第一训练集重新训练目标卷积神经网络模型,并重新构建第二检测集。本发明保证了训练集更新内容的准确度,整个过程全部实现计算机检测,提高了模型的迭代效率和识别精度。
-