-
公开(公告)号:CN101630997B
公开(公告)日:2012-08-15
申请号:CN200910061656.3
申请日:2009-04-14
Applicant: 华中科技大学 , 武汉华中数控股份有限公司
Abstract: 本发明提出一种环形总线数据报文CRC校验字的动态修正方法,该方法采用FPGA实现。当网络报文经过各从站点时,网络报文与从站完成数据交换并被发送给下一站,与此同时,从站根据交换数据后的新网络报文的数据计算新的CRC校验字,新的CRC校验字的计算采用按位计算法,并采用4至16倍网络芯片工作时钟作为CRC的高频计算频率,减少了CRC校验字的计算时间,在网络报文几乎无延时等待的情况下,实现新的CRC校验字紧随网络报文发送给下一站,从而实现CRC校验字的动态修正。网络报文延时和CRC高频计算频率和CRC类型有关,8倍网络芯片工作时钟下,CRC-32校验的网络延时是2个网络芯片工作时钟。本发明数据报文的延时很短,几乎可以忽略不计,非常适合于“飞读”通信模式。
-
公开(公告)号:CN101630997A
公开(公告)日:2010-01-20
申请号:CN200910061656.3
申请日:2009-04-14
Applicant: 华中科技大学 , 武汉华中数控股份有限公司
Abstract: 本发明提出一种环形总线数据报文CRC校验字的动态修正方法,该方法采用FPGA实现。当网络报文经过各从站点时,网络报文与从站完成数据交换并被发送给下一站,与此同时,从站根据交换数据后的新网络报文的数据计算新的CRC校验字,新的CRC校验字的计算采用按位计算法,并采用4至16倍网络芯片工作时钟作为CRC的高频计算频率,减少了CRC校验字的计算时间,在网络报文几乎无延时等待的情况下,实现新的CRC校验字紧随网络报文发送给下一站,从而实现CRC校验字的动态修正。网络报文延时和CRC高频计算频率和CRC类型有关,8倍网络芯片工作时钟下,CRC-32校验的网络延时是2个网络芯片工作时钟。本发明数据报文的延时很短,几乎可以忽略不计,非常适合于“飞读”通信模式。
-
公开(公告)号:CN101631059A
公开(公告)日:2010-01-20
申请号:CN200910061655.9
申请日:2009-04-14
Applicant: 华中科技大学 , 武汉华中数控股份有限公司
IPC: H04L12/437 , H04L1/22
Abstract: 本发明公开了一种实现现场总线拓扑结构实时重构的通信单元,包括第一、第二数据处理模块和二个端口,二个端口均设有接收模块和发送模块,其中任一端口的接收模块均通过第一数据处理模块或第二数据处理模块与另一端口的发送模块连接,在第一、第二数据处理模块之间设置有双向电子开关。本发明采用一个双向电子开关即可实现数据流向的灵活切换。具有双环结构的主从通信系统中采用两个处理模块,分别处理各自通信链路上的数据信息信号,真正提高了一次通信操作中的数据信息信号冗余度,实现数据信息信号双环结构。
-
公开(公告)号:CN101631016A
公开(公告)日:2010-01-20
申请号:CN200910061657.8
申请日:2009-04-14
Applicant: 华中科技大学 , 武汉华中数控股份有限公司
Abstract: 本发明公开了一种现场总线的时间同步方法,包括主站实施过程和从站实施过程。在每个通信周期中,主站将上一个周期的帧发送时刻和帧接收时刻之差以及本数据帧的发送时刻发送给环形网络中。各从站根据二个周期接收数据帧的时间差计算出主站数据帧到本单元的延时时间,再加上主站本数据帧的发送时刻,计算出本站时钟时间,实现时钟同步。本方法在各通信周期中对各从站的时钟进行同步,从站在接收到主站的数据帧后对其时钟进行校正,同步后的时钟偏差决定于通信周期内的晶振漂移误差及处理间隔,因每次通信从站都进行时钟同步,故时钟同步误差不会产生累积。应用本方法同步的系统最大时钟误差为14ns。该方法易于实现,且只占用极小的通信带宽开销。
-
公开(公告)号:CN101631016B
公开(公告)日:2011-09-14
申请号:CN200910061657.8
申请日:2009-04-14
Applicant: 华中科技大学 , 武汉华中数控股份有限公司
Abstract: 本发明公开了一种现场总线的时间同步方法,包括主站实施过程和从站实施过程。在每个通信周期中,主站将上一个周期的帧发送时刻和帧接收时刻之差以及本数据帧的发送时刻发送给环形网络中。各从站根据二个周期接收数据帧的时间差计算出主站数据帧到本单元的延时时间,再加上主站本数据帧的发送时刻,计算出本站时钟时间,实现时钟同步。本方法在各通信周期中对各从站的时钟进行同步,从站在接收到主站的数据帧后对其时钟进行校正,同步后的时钟偏差决定于通信周期内的晶振漂移误差及处理间隔,因每次通信从站都进行时钟同步,故时钟同步误差不会产生累积。应用本方法同步的系统最大时钟误差为14ns。该方法易于实现,且只占用极小的通信带宽开销。
-
公开(公告)号:CN101631059B
公开(公告)日:2011-06-29
申请号:CN200910061655.9
申请日:2009-04-14
Applicant: 华中科技大学 , 武汉华中数控股份有限公司
IPC: H04L12/437 , H04L1/22
Abstract: 本发明公开了一种实现现场总线拓扑结构实时重构的通信单元,包括第一、第二数据处理模块和二个端口,二个端口均设有接收模块和发送模块,其中任一端口的接收模块均通过第一数据处理模块或第二数据处理模块与另一端口的发送模块连接,在第一、第二数据处理模块之间设置有双向电子开关。本发明采用一个双向电子开关即可实现数据流向的灵活切换。具有双环结构的主从通信系统中采用两个处理模块,分别处理各自通信链路上的数据信息信号,真正提高了一次通信操作中的数据信息信号冗余度,实现数据信息信号双环结构。
-
公开(公告)号:CN106313047B
公开(公告)日:2018-08-21
申请号:CN201610860966.1
申请日:2016-09-28
Applicant: 华中科技大学 , 武汉久同智能科技有限公司
IPC: B25J9/16
Abstract: 本发明属于工业机器人轨迹规划领域,并公开了一种基于Bezier样条的机器人实时拐角过渡方法,包括以下步骤:记录关节空间起始点,过渡点的坐标,笛卡尔空间目标点,过渡点的坐标,笛卡尔空间的过渡半径R及最大误差约束;计算笛卡尔空间过渡曲线起点和终点的坐标和关节空间过渡曲线起点的坐标;计算笛卡尔空间过渡曲线起点和终点速度方向单位矢量;计算笛卡尔卡尔空间过渡曲线中间控制点的坐标,并求解Bezier样条曲线的构造函数;最后进行速度规划和插补。通过本发明,同时实现了在点到点运动指令和线性运动运动指令之间过渡时过渡半径和最大过渡误差约束,高效率,高质量的完成点到点指令到线性运动指令之间的拐角过渡。
-
公开(公告)号:CN101374093B
公开(公告)日:2011-08-24
申请号:CN200810197117.8
申请日:2008-09-27
Applicant: 华中科技大学
Abstract: 本发明公开了一种现场总线的通信接口及通信数据的实时传输方法。通信接口包括FPGA和二个收发端口,FPGA内设置有第一、第二移位及数据传输寄存器阵列,第一、第二端口数据缓冲区,以及现场总线协议处理模块;二个收发端口均包括接收端RX和发送端TX。传输方法是通过主站用于传输主导数据,将需要向各从站传输的数据打包,形成一帧报文,从其中一个端口发送出去,依次通过各个从站,并从另一个端口接收反馈回来的数据;各从站均在由前一站点传输过来的数据报文Q通过本站时,实时下载本站的数据,并将需要上传的数据插入数据报文Q中,完成数据的上传。本发明利用通用现场可编程门阵列(FPGA)实现了现场总线环形通信各站点数据的实时下载和上传问题,不需采用专用硬件,维护容易、成本低。
-
公开(公告)号:CN106444636B
公开(公告)日:2019-05-07
申请号:CN201610863749.8
申请日:2016-09-28
Applicant: 华中科技大学 , 武汉久同智能科技有限公司
IPC: G05B19/41
Abstract: 本发明公开了一种适用于连续混合曲线的速度规划参数选择方法,其包括以下步骤:(1)将数控机床或者机器人控制系统中的插补模块预读出的N段代码作为一个速度规划单元,构造N段连续曲线;其中N为正整数;(2)对构造的各个连续曲线段进行统一的速度规划参数化;(3)选择速度规划算法;(4)根据选择的速度规划算法对速度规划参数进行建模,以得到速度规划参数的数学模型;(5)确定各个速度规划参数的数值范围;(6)依据所述数学模型及各个速度规划参数的取值范围,采用优化工具求取各个速度规划参数的数值。
-
公开(公告)号:CN106325073B
公开(公告)日:2018-11-30
申请号:CN201610933884.5
申请日:2016-10-31
Applicant: 华中科技大学 , 武汉久同智能科技有限公司
IPC: G05B13/04
Abstract: 本发明公开了一种基于分数阶的伺服系统位置环IP控制器无模型自校正方法,包括以下步骤:设定参考模型,激励系统获取离线数据库,初始化系统相关参数,然后根据当前时刻新采集的输入和输出数据进行数据库的更新,接着根据相似度准则函数进行相似数据队列的选择,之后进行分数阶控制器阶次的选取,最后采用粒子群优化算法对分数阶IP控制器参数进行自校正。本发明提出的无模型自校正方法考虑了系统的分数阶特性,综合衡量了超调量、上升时间、误差收敛速度以及控制器参数的变化量等方面的性能,并且使用相似度准则函数保证了系统的实时性,另外不受未建模动态的影响,提高了系统的鲁棒性、抗扰动能力和控制精度。
-
-
-
-
-
-
-
-
-