-
公开(公告)号:CN117697058A
公开(公告)日:2024-03-15
申请号:CN202311750655.6
申请日:2023-12-19
发明人: 王星星 , 彭进 , 温国栋 , 潘昆明 , 樊东坡 , 吴港 , 杜全斌 , 樊江磊 , 凌自成 , 孙华为 , 陈小明 , 纠永涛 , 倪增磊 , 施建军 , 原志鹏 , 周甲伟 , 李立建 , 崔大田
摘要: 基于CMT超声钎涂的液压支架油缸内壁性能增强方法及装置,该方法包括以下步骤,S1:去除液压支架油缸内壁的氧化层;S2:在液压支架油缸内壁加工位错通道;S3:在液压支架油缸内壁由内向外进行CMT焊接,焊接过程伴随超声波辅助,且焊枪完成一个行程时停止超声波辅助,待10~30s后,将液压支架油缸旋转9~15°,继续钎涂,直至完成液压支架油缸内壁所有涂层作业;本发明利用位错通道增强基体与涂层的界面反应行为与结合强度,制备涂层组织均匀、工艺简单和成本低的耐磨涂层。
-
公开(公告)号:CN114912272A
公开(公告)日:2022-08-16
申请号:CN202210517775.0
申请日:2022-05-12
申请人: 华北水利水电大学
IPC分类号: G06F30/20 , G16C10/00 , G16C60/00 , G01N19/04 , G06F119/04 , G06F119/14
摘要: 本发明公开了一种机械构件表面复合强化涂层界面结合行为预测方法,包括:对机械构件进行预处理并构建机械构件的表面复合强化涂层;对表面复合强化涂层的析出相进行物相表征;建立界面物相模型;计算电荷密度、差分电荷密度、分波态密度、Mulliken布局;获取界面黏附功,分析界面的电荷转移、轨道杂化和成键类型;基于界面黏附功以及界面的电荷转移、轨道杂化和成键类型判断界面的结合强度并获取预测结果。本发明弥补了第一性原理计算在复合涂层领域的应用,大幅降低了实验工作量,节省实验成本,预测结果准确可靠,解决了航空航天、轨道交通、大型水利机械、起重装备等领域工程机械关键构件表面摩擦、磨损及腐蚀难题。
-
公开(公告)号:CN113667973A
公开(公告)日:2021-11-19
申请号:CN202110974547.1
申请日:2021-08-24
申请人: 华北水利水电大学
摘要: 本发明涉及一种用于修复水轮机叶片的高强高耐磨复合钎涂层,由重量百分比为(1~9):1的低熔点钎料与高熔点硬质合金混合后经涂覆加热制成,所述低熔点钎料为铁基钎料、铜基钎料、镍基钎料中的任意两种或三种的混合物,高熔点硬质合金为碳化物与硼化物的混合物。本发明提供的高强高耐磨复合钎涂层,有机混合铁基、铜基、镍基低熔点钎料与碳化物、硼化物、金刚石高熔点硬化材料,具有高强、高硬、高耐磨、高耐蚀等独特优点,其中耐磨性比基体提高37.2~51.9%,复合钎涂层的耐腐蚀性提高2~3.5个数量级,涂层与基体的结合强度提高0.56~1.18倍,可有效解决水力机械在过流、泥沙环境中的气孔、腐蚀、裂纹、磨损等缺陷。
-
公开(公告)号:CN112548258A
公开(公告)日:2021-03-26
申请号:CN202011402683.5
申请日:2020-12-02
申请人: 华北水利水电大学
摘要: 本发明涉及一种智能钎涂装置及钎涂方法,包括可移动工作台、送丝机构、两个工业机器人、涂层温度场监测装置、涂层轮廓监测装置、高能束发生器和控制系统;所述两个工业机器人、涂层温度场监测装置和涂层轮廓监测装置均设置在可移动工作台的上方,两个工业机器人中的一个机器人用于提供丝材钎料,一个机器人用于提供钎涂热源,送丝机构为机器人输送丝状或管状钎料,高能束发射器通过高能束发射头为机器人提供热源。本发明制备的涂层表面平整、与母材结合良好、无裂纹缺陷和组织致密的熔覆层。本发明从装备平台开发角度,解决了人工钎涂稳定性差、涂层厚度不均匀的问题。
-
公开(公告)号:CN114749744B
公开(公告)日:2023-04-18
申请号:CN202210517852.2
申请日:2022-05-12
申请人: 华北水利水电大学
IPC分类号: B23K1/00 , B23K1/20 , G16C20/30 , G16C60/00 , B23K103/04
摘要: 本发明公开了一种预测无磁钢连接界面氮化物的方法,包括:对无磁钢界面进行预处理,开展高温钎焊实验;进行物相表征;建立并优化相关空间群晶体结构模型,对不同氮化物的性能进行评定;选取并构建最稳定的氮化物/钎料界面三维模型,对不同氮化物与钎料的结合性能进行评定;基于对不同氮化物的性能进行评定的结果以及对不同氮化物与钎料的结合性能进行评定的结果,获取无磁钢界面的氮化物预测结果。本发明使用第一性原理计算模拟预测无磁钢连接界面氮化物与钎焊接头性能,仅需钎焊实验后对界面氮化物析出相进行表征、计算,即可预测分析不同相对钎焊接头力学性能影响规律,方法简单、可行。
-
公开(公告)号:CN114571128A
公开(公告)日:2022-06-03
申请号:CN202210399571.1
申请日:2022-04-15
申请人: 华北水利水电大学
IPC分类号: B23K35/02 , B23K35/30 , B23K1/008 , B23K1/20 , B23K103/00 , B23K103/18
摘要: 一种陶瓷/高氮钢热电构件钎焊用复合钎料及其钎焊方法和应用,复合钎料具有上下双层结构,分别为AgCuNiZrB五元合金层和CuAgGaInTi五元合金层,AgCuNiZrB五元合金层的成分含量为:Cu25~28wt%、NiB合金8~11wt%、Zr12~16wt%,Ag为余量,CuAgGaInTi五元合金层的成分含量为:Ag28.5~31.0wt%、GaIn合金5.5~8.0wt%、Ti2.5~3.3wt%,Cu为余量,或者CuAgGaInTi五元合金层的成分含量为:Ag16.5~27.5wt%、GaIn合金8.5~16.0wt%、Ti3.5~7.5wt%,Cu为余量。该复合钎料熔化温度较低、润湿性能强,钎料采用复合结构能够有效地阻止活性元素向高氮钢侧扩散生成脆性相,从而提高了接头强度,且钎焊工艺简单,可实现含有复杂图案线路绝缘陶瓷/高氮钢热电构件的高可靠连接。
-
公开(公告)号:CN112548258B
公开(公告)日:2022-05-10
申请号:CN202011402683.5
申请日:2020-12-02
申请人: 华北水利水电大学
摘要: 本发明涉及一种智能钎涂装置及钎涂方法,包括可移动工作台、送丝机构、两个工业机器人、涂层温度场监测装置、涂层轮廓监测装置、高能束发生器和控制系统;所述两个工业机器人、涂层温度场监测装置和涂层轮廓监测装置均设置在可移动工作台的上方,两个工业机器人中的第一机器人用于提供丝材钎料,第二机器人用于提供钎涂热源,送丝机构为第一机器人输送丝状或管状钎料,高能束发射器通过高能束发射头为第二机器人提供热源。本发明制备的涂层表面平整、与母材结合良好、无裂纹缺陷和组织致密的熔覆层。本发明从装备平台开发角度,解决了人工钎涂稳定性差、涂层厚度不均匀的问题。
-
公开(公告)号:CN110952017A
公开(公告)日:2020-04-03
申请号:CN201911371698.7
申请日:2019-12-27
申请人: 华北水利水电大学
摘要: 本发明公开一种高熵超银钎料合金及其制备方法,该发明银含量低、性能优异、连接强度高。按照摩尔百分比包括以下物质:20-30%CuP合金;20-30%NiSn合金;20-25%Ag;20-25%稀土Re。其制备方法,采用多靶直流磁控溅射共沉积电源在基底表面同时沉积CuP、Re、Ni、Sn、Ag金属或合金,制备成六元高熵超银钎料合金。本发明为大型电机领域相关管路、转子的创新连接提供技术支撑,主要用于大型电机的高可靠连接,定位预制钎料在钎焊连接部位,避免接头中出现乱流、钎透、熔蚀等现象。
-
公开(公告)号:CN110919232A
公开(公告)日:2020-03-27
申请号:CN201911420127.8
申请日:2019-12-31
申请人: 华北水利水电大学
IPC分类号: B23K35/24
摘要: 本发明公开了一种金基高熵钎料,属于焊接材料技术领域,按摩尔百分比计,原料包括如下组分:10~20%AuCu合金、10~20%Ni、20~25%Zr、20~25%Mn、20~25%Cr。由于鸡尾酒效应,本发明高熵金基钎料合金既可以表现出各组成元素优良的理化特性,又具有单独元素所不具有的一些整体效应。利用这点,可以通过改变合金组成元素及成分,高效配置具有合适熔化温度、均匀组织、优异力学性能、良好高温性的金基钎料。同时,本发明金基钎料的高熵效应和缓慢扩散效应对于钎焊过程中合金母材向钎缝中的过度溶解具有重要的抑制作用。
-
公开(公告)号:CN117077410A
公开(公告)日:2023-11-17
申请号:CN202311050538.9
申请日:2022-05-12
申请人: 华北水利水电大学
IPC分类号: G06F30/20 , G16C10/00 , G16C60/00 , G01N19/04 , G06F119/04 , G06F119/14
摘要: 本发明提供了一种机械构件表面复合强化涂层界面结合行为预测方法,包括:对机械构件进行预处理并构建机械构件的表面复合强化涂层;对表面复合强化涂层的析出相进行物相表征;建立界面物相模型;计算电荷密度、差分电荷密度、分波态密度、Mulliken布局;获取界面黏附功,分析界面的电荷转移、轨道杂化和成键类型;基于界面黏附功以及界面的电荷转移、轨道杂化和成键类型判断界面的结合强度并获取预测结果。本发明弥补了第一性原理计算在复合涂层领域的应用,大幅降低了实验工作量,节省实验成本,预测结果准确可靠,解决了航空航天、轨道交通、大型水利机械、起重装备等领域工程机械关键构件表面摩擦、磨损及腐蚀难题。
-
-
-
-
-
-
-
-
-