-
公开(公告)号:CN116683431A
公开(公告)日:2023-09-01
申请号:CN202310617968.8
申请日:2023-05-29
申请人: 国电南瑞科技股份有限公司 , 南京南瑞信息通信科技有限公司
IPC分类号: H02J3/00 , G06Q10/0639 , G06Q10/20 , G06Q50/06 , G06F30/18 , G06F30/20 , G06F111/10 , G06F111/04 , G06F119/02 , G06F113/04
摘要: 本发明公开了一种配电系统恢复力快速评估指标与评估方法及系统,对配电系统元件进行建模,并对其拓扑划分元胞进行简化;通过解析计算的方式,综合考虑配电系统在自然灾害下各阶段的响应,分别通过系统失负荷期望值、灾害中节点元胞的停电失负荷期望以及灾害后节点元胞的维修失负荷期望来表示电力系统各个层次下在灾害前,灾害中以及灾害后各阶段的恢复力评估指标,通过故障概率事件的解析表达来计算这些评估指标,并得到配电系统的系统功能图,直观反映系统的恢复力水平;本发明用于指导电力系统在灾害尚未到来时的线路规划、元件的加固、联络线路配置以及冗余资源的配置等,并为灾害中的紧急响应调度以及灾害后的抢修恢复决策提供量化依据。
-
公开(公告)号:CN115688032A
公开(公告)日:2023-02-03
申请号:CN202211330285.6
申请日:2022-10-27
申请人: 南京南瑞信息通信科技有限公司 , 国电南瑞科技股份有限公司
IPC分类号: G06F18/2431 , G06F18/27 , G06Q10/20 , G06Q50/06
摘要: 本发明公开了一种基于多源数据融合的台风灾害下电网风险预警方法及系统,对台风灾害下电网风险预警数据集中的数据进行时间维度和空间维度的网格划分,将不同类型的数据根据网格划分进行匹配,得到每个网格的电网、地理和气象数据;分析每个网格电网元件脆弱性,建立每个网格内元件的脆弱性曲线,并根据脆弱性曲线计算科普兰德得分,将科普兰德得分结合网格化数据建立网格化风险预警数据集;对基于回归决策树的电网风险预警模型进行训练;向训练好的电网风险预警模型中输入台风预报数据,得到电网故障预测数量,实现电网风险预警。本发明能够准确预测台风灾害下电网设备故障数量,有效提升电网对台风灾害的应对能力,减少经济损失。
-
公开(公告)号:CN118940782A
公开(公告)日:2024-11-12
申请号:CN202410964544.3
申请日:2024-07-18
申请人: 南京南瑞信息通信科技有限公司
摘要: 本发明公开了一种QR二维码矫正修复方法及系统,修复方法是对位置编码后的图像进行特征提取,得到低分辨率图像特征和高分辨率图像特征;根据低分辨率图像特征,预测变形场和灰度场,对变形场和灰度场进行嵌入操作,得到全局畸变和灰度特征;根据变形场对低分辨率图像特征进行弹性变换,得到弹性变换低分辨率图像特征;将低分辨率图像特征、全局畸变和灰度特征、弹性变换低分辨率图像特征和高分辨率图像特征进行特征融合;反卷积融合后的特征,得到矫正变形场和矫正灰度场,对二维码图像进行修复。本发明由整体至局部的学习过程,对矫正位移较大的畸变具有更好的效果,且将灰度场和变形场作为模型的两个输出,提高了二维码图像的成像质量。
-
公开(公告)号:CN112132135B
公开(公告)日:2023-11-28
申请号:CN202010877635.5
申请日:2020-08-27
申请人: 南京南瑞信息通信科技有限公司
摘要: 本发明公开一种基于图像处理的电网传输线检测方法、存储介质,方法包括:读入待检测图片;将图片灰度化;对灰度化图像进行平滑去噪、图像算术运算、灰度线性变换等一系列图像处理方法;对处理后的图像进行边缘检测;确定图像中的感兴趣区域ROI;对ROI内的像素点进行分类得到各传输线的边缘像素点集合;根据边缘像素点集合拟合传输线,并输出检测结果,检测结果可同时包括传输线的方程以及数量。利用本发明能够根据采集的图像进行传输线检测,能够排除天空以及云层等背景的干扰,具有一定的鲁棒性和实用性。
-
公开(公告)号:CN116245807A
公开(公告)日:2023-06-09
申请号:CN202211703829.9
申请日:2022-12-29
申请人: 南京南瑞信息通信科技有限公司
IPC分类号: G06T7/00 , G06V10/764 , G06V10/40 , G06V10/80 , G06V10/82 , G06N3/045 , G06N3/0499 , G06N3/08
摘要: 本发明公开了一种电力设备表面异常变化的检测方法、装置及介质,其方法包括获取任一时刻电力设备的表面图像作为待检测图像;获取电力设备的基准图像;将待检测图像和基准图像输入训练好的变化检测网络模型,得到变化检测结果;其中,所述变化检测网络模型的训练包括:获取不同时刻电力设备的表面图像作为待训练图像;基于基准图像对各待训练图像进行异常变化的标注,生成标注图像集;构建基于自注意力机制的变化检测网络模型;通过标注图像集训练变化检测网络模型;本发明能够有效提升电力设备表面异常变化的检测精度,及时发现电力设备疑似故障,保障电力设备安全稳定运行。
-
公开(公告)号:CN108171117B
公开(公告)日:2019-05-21
申请号:CN201711268417.6
申请日:2017-12-05
申请人: 南京南瑞信息通信科技有限公司
CPC分类号: G06K9/00973 , G06K9/00986 , G06N3/0454
摘要: 本发明公开了一种基于多核异构并行计算的电力人工智能视觉分析系统,其特征在于,包括以轻量级神经网络为核心,包括一种多核异构并行计算模块和业务应用模块;业务应用模块和多核异构并行计算模块之间通过网络服务接口访问,传输数据;所述多核异构并行计算模块包括GPU计算节点、CPU存储管理节点、CPU计算节点,各节点之间通过交换机连接;业务应用模块包括图像管理模块、图像标注模块、模型训练模块、算法应用模块;本发明基于多核异构并行计算框架,可高效实现在线或离线图像数据训练,形成轻量化快速图像分类模型,实现电力内外网图像业务应用,能最大化发挥图像数据的价值,具备较好的应用前景。
-
公开(公告)号:CN106534870A
公开(公告)日:2017-03-22
申请号:CN201611178028.X
申请日:2016-12-19
申请人: 国网新疆电力公司电力科学研究院 , 国家电网公司 , 南京南瑞集团公司 , 南京南瑞信息通信科技有限公司
IPC分类号: H04N19/567 , H04N19/61 , H04N19/587
摘要: 本发明公开了一种基于RGB源视频的率失真优化编码方法,其特征在于,包括如下步骤:步骤1、输入RGB源视频;步骤2、将RGB源视频转换为YUV视频;步骤3、对转换得到的YUV视频进行预测编码;步骤4、进行率失真优化:在预测编码过程中,针对各编码模式计算编码比特数,且将该编码模式下解码后的重构视频转换成RGB空间的重构视频,并计算RGB重构视频与RGB源视频之间的失真;步骤5、根据步骤4计算的编码比特数和RGB失真,计算各编码模式对应的率失真代价;步骤6、选择率失真代价最小的编码模式进行编码。提高RGB视频的编码效率和编码质量,提高用户显示体验。
-
公开(公告)号:CN118537594A
公开(公告)日:2024-08-23
申请号:CN202410711850.6
申请日:2024-06-04
申请人: 南京南瑞信息通信科技有限公司 , 国网电力科学研究院有限公司 , 国网河北省电力有限公司 , 国网河北省电力有限公司电力科学研究院
IPC分类号: G06V10/72 , G06V10/10 , G06T7/00 , G06V10/82 , G06N3/0475 , G06N3/094 , G06N3/0455
摘要: 本发明公开了一种电力异常场景小样本扩充方法及系统,该方法首先拍摄电力设备正常图像构建正常样本集,拍摄电力设备异常图像构建异常样本集;然后将电力设备正常图像进行目标识别和提取,得到仅包含电力设备的第一图像,将所述第一图像输入循环对抗生成网络得到第二图像,将第二图像替换第一图像拼接到电力设备正常图像中,生成第二电力设备异常图像;最后将第二电力设备异常图像加入异常样本集中以扩充异常样本数据集;本发明能够避免电力设备以外的环境干扰,生成符合类似布控球、无人机、监控摄像头拍摄得到的电力场景异常图像,扩充电力异常场景的小样本数据集。
-
公开(公告)号:CN117671587A
公开(公告)日:2024-03-08
申请号:CN202311641419.0
申请日:2023-12-01
申请人: 南京南瑞信息通信科技有限公司
IPC分类号: G06V20/52 , G06V10/44 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/09 , G06N3/096 , H02J13/00
摘要: 本发明公开了一种基于自监督学习的电力设备缺陷检测方法、系统,包括以下步骤:首先,对采集的电力设备图像进行图像增强,构建自监督样本集,并从中挑选出高质量设备异常图像进行标注,构建有监督样本集;其次,设计包含分层嵌入模块、局部感知模块和动态注意力聚焦模块的新型ViT网络,并通过对比学习在自监督样本集上训练新型ViT网络,得到预训练模型;然后,抽取出预训练模型中编码器部分,添加FPN网络和检测头网络,构建设备缺陷检测网络,并冻结编码器的权重,利用有监督样本集对网络进行微调;最后,对体积大于设定值的设备缺陷检测模型,使用知识蒸馏进行压缩和加速。本发明能够在少量标注样本情况下提升电力设备缺陷检测精度。
-
公开(公告)号:CN114821328A
公开(公告)日:2022-07-29
申请号:CN202210502905.3
申请日:2022-05-10
申请人: 南京南瑞信息通信科技有限公司
摘要: 本发明公开了一种基于完全学习的电力图像处理方法及装置,将特征图Fout和特征图Fout的标定值作为训练集,利用训练集对电力图像异常值检测模型;将电力图像输入训练好的电力图像异常值检测模型,输出电力图像中电力设备异常预测结果。有效的利用了卷积过程的局部特征提取优点和自注意力计算的全局特征提取的优点,构建了一个高效的图像特征学习方法,通过混合学习的特征图可以很好的完全表示原图像的特征信息,有效地学习到电力图像中的特征信息。本发明提升了识别的准确性,降低了人工巡检成本,自动检测输电线路上的缺陷,保障国家电力系统的安全运行。
-
-
-
-
-
-
-
-
-