-
公开(公告)号:CN107133325B
公开(公告)日:2020-01-07
申请号:CN201710310894.8
申请日:2017-05-05
Applicant: 南京大学 , 云南省测绘资料档案馆(云南省基础地理信息中心)
IPC: G06F16/58 , G06F16/583 , G06F16/29
Abstract: 本发明涉及基于街景地图的互联网照片地理空间定位方法,步骤如下:预处理街景照片库,提取和描述特征,建立特征索引;根据索引,查询待查询照片每个特征的最近邻特征,并进行投票,修剪和平滑处理投票结果,得到最相似照片;根据已知的两两街景点之间距离,以最相似照片为圆心,划定缓冲区;对缓冲区内街景照片与待查询照片计算相似度,筛选出高相似度的照片作为相似照片集;将相似照片集和待查询照片一起进行特征提取、匹配,利用SfM算法配准照片,生成稀疏点云及相机的相对位置关系;根据已知的街景点坐标,推算未知的待查询照片外方位元素,实现定位定姿。实践证明,本发明提出的图像定位方法,能有效地对互联网任意来源的电子照片精确定位。
-
公开(公告)号:CN107133325A
公开(公告)日:2017-09-05
申请号:CN201710310894.8
申请日:2017-05-05
Applicant: 南京大学 , 云南省测绘资料档案馆(云南省基础地理信息中心)
IPC: G06F17/30
Abstract: 本发明涉及基于街景地图的互联网照片地理空间定位方法,步骤如下:预处理街景照片库,提取和描述特征,建立特征索引;根据索引,查询待查询照片每个特征的最近邻特征,并进行投票,修剪和平滑处理投票结果,得到最相似照片;根据已知的两两街景点之间距离,以最相似照片为圆心,划定缓冲区;对缓冲区内街景照片与待查询照片计算相似度,筛选出高相似度的照片作为相似照片集;将相似照片集和待查询照片一起进行特征提取、匹配,利用SfM算法配准照片,生成稀疏点云及相机的相对位置关系;根据已知的街景点坐标,推算未知的待查询照片外方位元素,实现定位定姿。实践证明,本发明提出的图像定位方法,能有效地对互联网任意来源的电子照片精确定位。
-
公开(公告)号:CN113128523B
公开(公告)日:2024-07-26
申请号:CN202110516844.1
申请日:2021-05-12
Applicant: 南京大学
Abstract: 本发明涉及一种基于时间序列遥感影像自动提取珊瑚礁的方法,包括以下步骤:第一步、遥感影像并行预处理——对于影像进行大气校正;第二步、遥感影像自动筛选——从空间重叠、日期唯一、云量、图像熵四个方面实现影像的自动筛选;第三步、时间序列构建——构造影像MNDWI的时间序列;第四步、珊瑚礁自动提取——构建珊瑚礁时间序列的特征曲线,计算像素级时间序列与所述特征曲线之间的DTW值,使用二分法确定DTW阈值并提取珊瑚礁。本发明解决了珊瑚礁影像中存在多种噪声的问题,实现了遥感影像自动筛选,提出了一个可靠的基于时间序列遥感影像自动提取珊瑚礁的方法,并为基于其他卫星传感器自动提取珊瑚礁范围提供了流程思路。
-
公开(公告)号:CN114926727B
公开(公告)日:2025-05-06
申请号:CN202210391456.X
申请日:2022-04-14
Applicant: 南京大学
IPC: G06V20/05 , G06T5/10 , G06T17/05 , G06V10/774 , G06N3/084 , G06N3/045 , G06N3/0499 , G06N20/20 , G06V10/82
Abstract: 本发明公开了一种基于神经网络与集成学习的水下地形提取方法,该方法包括以下步骤:采用数字图像处理技术并结合目视解译辅助的方式,对遥感影像数据集进行预处理,并将预处理后的遥感影像和训练样本作为输入数据集;构建基于BP神经网络算法的子学习器,对BP神经网络算法进行训练,并利用训练好的神经网络模型对若干水深反演结果进行生成;基于最小离群度方法确定集成策略;将整个研究区的水深反演结果集进行集成,并对集成后的水下地形图进行精度评估。实现高精度浅海水下地形;通过神经网络与集成学习算法的结合,解决了传统BP神经网络算法在水深反演过程中的鲁棒性较差问题,进一步提升了水深反演精度和可靠性。
-
公开(公告)号:CN111401702B
公开(公告)日:2023-06-02
申请号:CN202010150608.8
申请日:2020-03-06
Applicant: 南京大学
IPC: G06Q10/0635 , G06Q50/26 , G06Q50/30 , G06F17/16 , G06N7/02
Abstract: 本发明涉及一种海上交通风险评估方法,包括以下步骤:第一步、海上交通风险评估指标体系构建,指标体系包括三个风险组分:1)、危险性;2)、脆弱和暴露性;3)、缓解能力;第二步、评估指标空间数据库建立;第三步、评估指标权重计算——计算各风险组分指标权重;第四步、组分加权图生成;第五步、海上交通风险评估——计算海上交通风险指数,并进一步分为5级:非常高、高、中、低、非常低。本发明分析了海上交通风险的内在驱动因素,增加了海上交通风险的透明性,为降低海上事故的可能提供重要技术支持。本发明中地理空间技术、多准则决策、风险指数的结合提供了一个科学的海上交通风险评估方法,克服了海上交通风险工具的不足。
-
公开(公告)号:CN115983475A
公开(公告)日:2023-04-18
申请号:CN202310001248.9
申请日:2023-01-03
Applicant: 南京大学
IPC: G06Q10/04 , G06Q50/26 , G06F30/28 , G06F17/18 , G06F113/08 , G06F111/08 , G06F119/14
Abstract: 本发明涉及一种海区尺度落水人员漂移轨迹预测方法,步骤包括:海域分区、漂移轨迹预测模型建立、落水人员漂移轨迹预测、漂移轨迹预测模型精度及适用性评价。本发明提升了落水人员漂移轨迹预测精度,有助于提高海上搜救工作落水人员漂移轨迹精准预测能力,有力支撑海上搜救辅助决策。
-
公开(公告)号:CN111428916B
公开(公告)日:2023-04-07
申请号:CN202010169849.7
申请日:2020-03-12
Applicant: 南京大学
IPC: G06Q10/047 , G06Q10/0631 , G06Q10/0635 , G06Q10/0639 , G06Q50/26 , G06Q50/30
Abstract: 本发明涉及一种海上救援船舶巡航路径规划方法,包括以下步骤:第一步、利用基于GIS的多准则决策分析方法,建立航行风险指数,对每个格网的救援需求进行评估;第二步、基于时间可达性模型识别救援船的巡航区域;第三步、以路径所经格网救援需求之和最大为目标,通过求解线性规划问题确定最优巡航路径。本发明使用海洋环境数据可以确定救援船最优巡航路径。本发明可为有关部门规划救援船舶的海上巡航路径提供参考。
-
公开(公告)号:CN115235431B
公开(公告)日:2024-05-14
申请号:CN202210546616.3
申请日:2022-05-19
Applicant: 南京大学
Abstract: 本发明公开了一种基于光谱分层的浅海水深反演方法及系统,一种基于光谱分层的浅海水深反演方法包括以下步骤:S1、基于计算机数字图像处理技术对预设的遥感影像数据集进行预处理;S2、基于多光谱测深性能和影像分割的无参数光谱分层策略,获取遥感影像波段分量;S3、通过获取的所述遥感影像波段分量建立基于光谱分层的浅海水深反演算法。本发明提出一种基于光谱分层的浅海水深反演方法,解决了传统水深反演算法没有顾及不同光谱的测深极限与适用范围的问题,为浅海水深反演提供了一种更高精度的方法。
-
公开(公告)号:CN112115598B
公开(公告)日:2024-05-14
申请号:CN202010941034.6
申请日:2020-09-09
Applicant: 南京大学
IPC: G06F30/20 , G06F30/25 , G06F111/10 , G06F113/08
Abstract: 本发明涉及一种面向海上漂移轨迹预测的数据与模型耦合分析方法,步骤包括:实测漂移轨迹数据收集与海洋环境数据准备、漂移轨迹预测数值模拟实验、不同海洋环境数据集时空分析、多维度漂移轨迹预测精度评价、精度评价结果统计分析、基于预测轨迹与实测轨迹的FSLE分析、多因素敏感度分析和环境数据与预测模型在区域的适用性评估。本发明提升了漂移轨迹预测中环境数据与物理模型耦合分析评价能力,有助于推动不同模式数据在漂移轨迹预测领域的应用并指导进一步区域数据精化工作。本发明提出了分析评价方法可以较为全面的验证相关预测模式在区域的真实表现,有助于提升轨迹预测的整体可靠性。
-
公开(公告)号:CN114926727A
公开(公告)日:2022-08-19
申请号:CN202210391456.X
申请日:2022-04-14
Applicant: 南京大学
Abstract: 本发明公开了一种基于神经网络与集成学习的水下地形提取方法,该方法包括以下步骤:采用数字图像处理技术并结合目视解译辅助的方式,对遥感影像数据集进行预处理,并将预处理后的遥感影像和训练样本作为输入数据集;构建基于BP神经网络算法的子学习器,对BP神经网络算法进行训练,并利用训练好的神经网络模型对若干水深反演结果进行生成;基于最小离群度方法确定集成策略;将整个研究区的水深反演结果集进行集成,并对集成后的水下地形图进行精度评估。实现高精度浅海水下地形;通过神经网络与集成学习算法的结合,解决了传统BP神经网络算法在水深反演过程中的鲁棒性较差问题,进一步提升了水深反演精度和可靠性。
-
-
-
-
-
-
-
-
-