-
公开(公告)号:CN118466517A
公开(公告)日:2024-08-09
申请号:CN202410911034.X
申请日:2024-07-09
Applicant: 南京师范大学
Abstract: 本发明公开了一种基于可见性图构建的机器人路径规划方法,通过获取环境的点云数据,提取点云数据中的障碍物的轮廓特征点;并构建障碍物的封闭多边形;对顶点数量大于阈值的封闭多边形,消除其长度小于阈值的边,得到优化后的障碍物多边形;并根据障碍物多边形各顶点之间的可视关系构建可见性图;给定机器人起点和终点,在可见性图上通过双向A*路径规划算法搜索机器人从起点到终点的最短路径。通过设置阈值来控制复杂的大型多边形的顶点数量,充分考虑移动机器人真实环境中冗余节点过多的特点,提高移动机器人在大场景环境下路径规划计算效率,满足实时性要求,使得移动机器人平滑、快速躲避动态障碍物,应用前景广泛。
-
公开(公告)号:CN117889867B
公开(公告)日:2024-05-24
申请号:CN202410304943.7
申请日:2024-03-18
Applicant: 南京师范大学
Abstract: 本发明公开了一种基于局部自注意力移动窗口算法的路径规划方法,获取当前作业环境的RGB图像,并进行预处理并变换为灰度图;进行边缘检测后获得二值化图像,通过激活函数得到边缘自注意力权重;根据灰度图分割后的图像块的海塞矩阵特征值的熵得到曲率自注意力权重;通过边缘自注意力权重和曲率自注意力权重改进自监督注意力语义分割网络,通过改进的网络获得含有语义信息的图像,根据连续时刻获得的图像预测障碍物的运动方向,从而选择机器人的运动方向。引入海塞矩阵的熵得到新的自注意力权重,加强物体边缘的分割;引入边缘检测得到的自注意力权重,加强图像中颜色变化较大部分的分割,提高边缘分割的准确性,从而提高避障的成功率。
-
公开(公告)号:CN119518783A
公开(公告)日:2025-02-25
申请号:CN202411573811.0
申请日:2024-11-06
Applicant: 南京师范大学
IPC: H02J3/06 , H02J3/00 , G06Q10/0631 , G06Q50/06
Abstract: 本发明公开了一种考虑需求响应的风电系统低碳优化调度方法,包括如下步骤:采集风电系统的日前风电出力与负荷的预测数据和预测偏差信息,建立源荷的不确定性模型;利用拉丁超立方抽样法分别对风电和负荷进行随机抽样,得到风电和负荷的初始场景集;采用启发式同步回代法对风电和负荷的初始场景集进行削减,生成风电和负荷的典型场景,同时得到各典型场景的发生概率信息;建立需求侧可响应负荷模型;基于建立的需求侧可响应负荷模型,建立改进阶梯型需求响应激励机制模型;采用多场景随机优化方法构建两阶段优化模型,包括需求响应上层优化模型和电力系统下层优化模型;采用Cplex求解器对两阶段优化模型进行求解,输出风电系统的优化调度结果。本发明通过需求响应与多元能源协调优化,提高系统的供需曲线匹配度,有效提升系统的风电消纳率及运行的低碳与经济性能。
-
公开(公告)号:CN118982582B
公开(公告)日:2025-01-14
申请号:CN202411450929.4
申请日:2024-10-17
Applicant: 南京师范大学
IPC: G06T7/73 , B25J9/16 , G06V20/56 , G06V10/25 , G06V10/44 , G06V10/52 , G06V10/80 , G06V10/82 , G06N3/0455 , G06N3/0464
Abstract: 本发明公开了一种基于Grasp‑CAD目标检测模型的抓取目标定位方法,通过引入CBAM注意力机制的C3模块和用于对FPN和PAN不同尺度的特征自适应特征缩放融合的AFRC模块的Grasp‑CAD目标检测模型处理图像数据,得到图像数据中目标物体的检测框的坐标;根据检测框的坐标,获得目标物体相对机械臂末端的位置。检测模型中采用引入CBAM注意力机制的C3模块,提升了对遮挡物检测的适应性及性能,模型特征提取能力强,对于遮挡目标能够检测出来,Neck模块自适应特征缩放融合AFRC模块提升检测速度,模型占用内存小,易于部署在机器人系统。
-
公开(公告)号:CN118038103A
公开(公告)日:2024-05-14
申请号:CN202410432780.0
申请日:2024-04-11
Applicant: 南京师范大学
IPC: G06V10/762 , G06V10/74 , G06V10/764
Abstract: 本发明公开了一种基于改进动态扩展模型自适应算法的视觉回环检测方法,获取环境图像并进行标签定义,获得图像的特征标签矩阵;获取聚类图像,通过原图像与聚类图像之间的相似性计算,得到特征标签矩阵的非相似性值;并与阈值比较后进行特征标签矩阵划分;对划分后的强数据标签集合和正常数据标签集合进行改进的原型聚类处理,将正常数据标签集合聚类到聚类图像中的聚类中心附近,将强数据标签集合嵌套到距聚类图像中的聚类中心更远处,形成新的聚类图像;对处理后的图像实现视觉回环检测。采用改进的动态扩展模型自适应算法可排除未知目标域的强数据的污染干扰,保持正常数据样本匹配的精准稳定性,提高回环检测的精准性。
-
公开(公告)号:CN119197544A
公开(公告)日:2024-12-27
申请号:CN202411710993.1
申请日:2024-11-27
Applicant: 南京师范大学
IPC: G01C21/20
Abstract: 本发明公开了一种基于局部探索及全局探索融合的机器人路径规划方法,获取全局探索空间,将全局探索空间划分为若干子空间,以子空间的质心作为全局路径点,并获得全局探索路径;以机器人周围预设距离内的空间作为局部探索空间,以全局探索路径与局部探索空间边界的交点作为边界点,对局部探索空间通过雷达进行均匀采样并提取候选路径点,通过局部路径点选择算法对候选路径点进行选择,得到局部路径点;并获得局部探索路径;将全局探索路径中两个边界点之间的路径替换为局部探索路径,得到最终规划路径。分层搜索框架既能够在局部空间中进行精确的路径规划,又能够通过全局探索规划的引导防止陷入局部最优化,同时节约了计算资源。
-
公开(公告)号:CN118037736A
公开(公告)日:2024-05-14
申请号:CN202410439130.9
申请日:2024-04-12
Applicant: 南京师范大学
Abstract: 本发明公开了一种基于特征参数提取的金属增材制造熔池形态检测方法;获取金属增材制造熔池的图像,并进行预处理,获得预处理后的熔池图像;对预处理后的熔池图像进行像素识别,检测得到熔池边缘像素,基于熔池边缘像素获得熔池中心的坐标,并基于熔池边缘像素的方向向量得到熔池主方向角度;根据熔池中心的坐标、熔池边缘像素和熔池主方向角度进行椭圆拟合,得到拟合的椭圆的长轴和短轴;以拟合的椭圆的长轴和短轴作为对应熔池的长度和宽度,输出熔池形态。通过先提取熔池中心作为椭圆中心和熔池主方向倾角,减少拟合参数的同时提升了拟合效果,对熔池宽度拟合的准确性较高,提升了熔池特征参数的提取速度以及准确性。
-
公开(公告)号:CN119197544B
公开(公告)日:2025-04-25
申请号:CN202411710993.1
申请日:2024-11-27
Applicant: 南京师范大学
IPC: G01C21/20
Abstract: 本发明公开了一种基于局部探索及全局探索融合的机器人路径规划方法,获取全局探索空间,将全局探索空间划分为若干子空间,以子空间的质心作为全局路径点,并获得全局探索路径;以机器人周围预设距离内的空间作为局部探索空间,以全局探索路径与局部探索空间边界的交点作为边界点,对局部探索空间通过雷达进行均匀采样并提取候选路径点,通过局部路径点选择算法对候选路径点进行选择,得到局部路径点;并获得局部探索路径;将全局探索路径中两个边界点之间的路径替换为局部探索路径,得到最终规划路径。分层搜索框架既能够在局部空间中进行精确的路径规划,又能够通过全局探索规划的引导防止陷入局部最优化,同时节约了计算资源。
-
公开(公告)号:CN118466517B
公开(公告)日:2024-10-15
申请号:CN202410911034.X
申请日:2024-07-09
Applicant: 南京师范大学
Abstract: 本发明公开了一种基于可见性图构建的机器人路径规划方法,通过获取环境的点云数据,提取点云数据中的障碍物的轮廓特征点;并构建障碍物的封闭多边形;对顶点数量大于阈值的封闭多边形,消除其长度小于阈值的边,得到优化后的障碍物多边形;并根据障碍物多边形各顶点之间的可视关系构建可见性图;给定机器人起点和终点,在可见性图上通过双向A*路径规划算法搜索机器人从起点到终点的最短路径。通过设置阈值来控制复杂的大型多边形的顶点数量,充分考虑移动机器人真实环境中冗余节点过多的特点,提高移动机器人在大场景环境下路径规划计算效率,满足实时性要求,使得移动机器人平滑、快速躲避动态障碍物,应用前景广泛。
-
公开(公告)号:CN117974740B
公开(公告)日:2024-07-02
申请号:CN202410385415.9
申请日:2024-04-01
Applicant: 南京师范大学 , 南京三万物联网科技有限公司
Abstract: 本发明公开了一种基于聚合式窗口自注意力机制的穴位定位方法,首先获取人体背部图像,并进行预处理,将预处理后的背部图像输入多尺度特征提取网络,得到背部特征图;多尺度特征提取网络包括若干特征图提取模块,预处理后的背部图像依次经过若干特征图提取模块的处理,每个特征图提取模块均包括聚合式窗口自注意力学习层;将背部特征图输入背部特征关键点检测网络进行背部特征关键点检测,得到背部特征关键点,通过背部穴位定位公式得到背部穴位具体坐标,实现背部穴位定位。在获取人体背部特征关键点特征中,针对关键点所处背部的位置,采用聚合式窗口自注意力学习方法,可以更加精准、快速的确定不同体型的人体背部的关键点位置。
-
-
-
-
-
-
-
-
-