-
公开(公告)号:CN115937506A
公开(公告)日:2023-04-07
申请号:CN202310219055.0
申请日:2023-03-09
IPC: G06V10/25 , G06V20/52 , G06V20/40 , G06V10/26 , G06V20/70 , G06V10/52 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/0455 , G06N3/0499 , G06N3/08
Abstract: 本发明公开了用于桥侧坠落点孔位信息定位的方法、系统、设备及介质,其中方法包括:S1:获取大桥两端的监控视频数据;S2:利用训练好的PervasionNET深度学习模型识别桥墩位置信息、江面浮子位置信息与江面行进船只位置信息;S3:基于桥墩位置信息、江面浮子位置信息及江面行进船只位置信息利用桥侧识别算法检测大桥各个孔位的位置信息;S4:利用训练好的PervasionNET模型识别有人坠落后产生的水花位置信息,通过水花位置信息与大桥孔位的位置信息的联合计算,获得落水者所在的孔位信息。依据本发明公开的方法判断坠落者坠落位置对应的孔位编号等信息,将该孔位信息发送至救援人员,提升了搜救效率。
-
公开(公告)号:CN111348690B
公开(公告)日:2023-08-11
申请号:CN202010174306.4
申请日:2020-03-13
Applicant: 南京邮电大学
Abstract: 本发明公开了一种NiS2纳米材料及其制备方法,NiS2纳米材料包括衬底及排列于该衬底表面的NiS2纳米颗粒;NiS2纳米颗粒是在加热状态下硫粉从固态转为液态硫粉S0,硫代丙烷磺酸钠溶液状态产生的S2‑和液态硫粉S0以及Ni2+在碳纤维衬底表面发生反应生成;其中NiS2纳米颗粒的粒径3~10μm,衬底为碳纤维类衬底,NiS2纳米材料负载量在0.5‑1.5 mg/cm3。本发明的纳米材料的纳米颗粒形貌良好,与衬底结合牢固度,负载量高,从而使得该纳米材料不仅具有优异的析氢析氧性能,且稳定性强;同时,该纳米材料的制备工艺简单,成本低廉,来源广泛,在未来的清洁能源氢气制备领域具有很好的应用前景。
-
公开(公告)号:CN115937506B
公开(公告)日:2023-05-23
申请号:CN202310219055.0
申请日:2023-03-09
IPC: G06V10/25 , G06V20/52 , G06V20/40 , G06V10/26 , G06V20/70 , G06V10/52 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/0455 , G06N3/0499 , G06N3/08
Abstract: 本发明公开了用于桥侧坠落点孔位信息定位的方法、系统、设备及介质,其中方法包括:S1:获取大桥两端的监控视频数据;S2:利用训练好的PervasionNET深度学习模型识别桥墩位置信息、江面浮子位置信息与江面行进船只位置信息;S3:基于桥墩位置信息、江面浮子位置信息及江面行进船只位置信息利用桥侧识别算法检测大桥各个孔位的位置信息;S4:利用训练好的PervasionNET模型识别有人坠落后产生的水花位置信息,通过水花位置信息与大桥孔位的位置信息的联合计算,获得落水者所在的孔位信息。依据本发明公开的方法判断坠落者坠落位置对应的孔位编号等信息,将该孔位信息发送至救援人员,提升了搜救效率。
-
公开(公告)号:CN111348690A
公开(公告)日:2020-06-30
申请号:CN202010174306.4
申请日:2020-03-13
Applicant: 南京邮电大学
Abstract: 本发明公开了一种NiS2纳米材料及其制备方法,NiS2纳米材料包括衬底及排列于该衬底表面的NiS2纳米颗粒;NiS2纳米颗粒是在加热状态下硫粉从固态转为液态硫粉S0,硫代丙烷磺酸钠溶液状态产生的S2-和液态硫粉S0以及Ni2+在碳纤维衬底表面发生反衬底应生,N成iS;2纳其米中材Ni料S2负纳载米量颗在粒0的.5粒-1.径5 3m~g1/0μcmm3,。衬本底发为明碳的纤纳维米类材料的纳米颗粒形貌良好,与衬底结合牢固度,负载量高,从而使得该纳米材料不仅具有优异的析氢析氧性能,且稳定性强;同时,该纳米材料的制备工艺简单,成本低廉,来源广泛,在未来的清洁能源氢气制备领域具有很好的应用前景。
-
公开(公告)号:CN111068720A
公开(公告)日:2020-04-28
申请号:CN201911240276.6
申请日:2019-12-06
Applicant: 南京邮电大学
Abstract: 本发明公开了一种Co-FeS2/CoS2纳米花材料及制备方法与调控其电催化性能的方法,该纳米花材料包括衬底及排列于该衬底表面、直径2-10μm的Co-FeS2/CoS2纳米花;制备时铁盐、钴盐、硫脲和硫粉加入去离子水中搅拌制得混合溶液,随后将衬底放入上述混合溶液中进行水热反应后,取出清洗、干燥,即可。调控性能时通过在0.5mol/L稀硫酸溶液中加入不同种类的强电解质硫酸盐改变阳离子的浓度,调节工作电极(即纳米花材料)与溶液间的双电层电容的厚度,从而改变纳米花材料的电催化析氢性能。本发明的纳米花形貌良好,与衬底结合牢固,负载量多,且稳定性强;调控析氢性能的方法,操作简单、成本低廉、效果显著。
-
-
-
-