-
公开(公告)号:CN106529724A
公开(公告)日:2017-03-22
申请号:CN201610998263.5
申请日:2016-11-14
Applicant: 吉林大学
Abstract: 本发明公开了一种灰色联合权重风电功率预测方法,分别对原始风电功率数据进行果蝇最小二乘支持向量机模型预测和灰色残差最小二乘支持向量机模型预测,得到训练数据,将训练数据与实际数据进行对比,进行灰色关联度分析,得到灰色关联度权重矩阵;分别利用果蝇最小二乘支持向量机和灰色最小二乘支持向量机对目标进行预测,得到的两个结果分别乘以步骤三得到的灰色关联度权重矩阵,结果相加,得到最终的预测结果。本发明提出了灰色关联度模型的权重组合算法,联合预测能够减小单个模型因不可知因素导致的重大误差,提高预测精度高的模型输出在结果中的比重。
-
公开(公告)号:CN106503867A
公开(公告)日:2017-03-15
申请号:CN201611003309.1
申请日:2016-11-14
Applicant: 吉林大学
Abstract: 本发明公开了一种遗传算法最小二乘风电功率预测方法,利用已收集到实测风速建立遗传算法最小二乘支持向量机预测模型,确定建模所用的输入、输出变量;对原始数据进行归一化处理,利用遗传算法优化参数的数据、最小二乘支持向量机预测模型训练和测试的样本数据;对遗传算法以及最小二乘支持向量机预测模型参数初始化设置,训练模型,通过遗传算法多代进化获得优化的最小二乘支持向量机预测模型参数,建立最小二乘支持向量机预测模型;用最小二乘支持向量机预测模型对测试样本做风速短期预测。本发明运用遗传算法对LSSVM模型进行参数寻优,建立了基于GA-LSSVM的风速信息预测模型,可以出色地实现数据的精确预测。
-