微探头偏振光相位调制的干涉位移测量系统及方法

    公开(公告)号:CN116878394A

    公开(公告)日:2023-10-13

    申请号:CN202310968540.8

    申请日:2023-08-02

    IPC分类号: G01B11/02

    摘要: 本发明属于激光测量领域,本发明公开了一种微探头偏振光相位调制的干涉位移测量系统及方法,利用相位调制器对半导体激光器输出的正交偏振光分量进行正弦相位调制,通过偏振分光棱镜分成参考光和测量光,两束光分别由微探头内置反射面和被测目标镜反射回环形器,在与环形器连接的光纤偏振元件上进行干涉,干涉光信号由光电探测器接收并解调处理,解算得到被测目标镜的位移量。本发明采用相位调制器对参考光和测量光进行相位调制实现微探头干涉位移测量,解决了现有微探头相位调制干涉仪中采用光源频率内调制引入的伴随光强调制误差和位移量程受调制深度限制的问题,同时降低了光源稳频的难度,实现了微探头大量程、高精度干涉位移测量。

    基于工作温度分段设定的高精度激光稳频方法与装置

    公开(公告)号:CN116454719B

    公开(公告)日:2024-04-23

    申请号:CN202310359174.6

    申请日:2023-04-06

    IPC分类号: H01S3/102 H01S3/131 H01S3/137

    摘要: 本发明提出基于工作温度分段设定的高精度激光稳频方法与装置。涉及激光干涉测量领域。本发明提出了工作温度分段设定的方法,通过划分环境温度区间,选定目标预热温度点,进行分区间预热与稳频,可使激光器快速、准确地工作在目标预热温度上。本发明的有效稳频环境温度范围至‑20~40℃,激光稳频相对准确度达到1.0×10‑8,可以解决传统固定预热温度方案下由于环境温度过低或者过高而无法建立有效热平衡状态,导致激光器不能正常工作的问题。

    微探头激光调频干涉测距方法及系统

    公开(公告)号:CN117192560A

    公开(公告)日:2023-12-08

    申请号:CN202310968558.8

    申请日:2023-08-02

    IPC分类号: G01S17/08

    摘要: 本发明属于光纤干涉测量技术领域,公开了微探头激光调频干涉测距方法及系统,本发明在不需要引入绝对式激光测距仪从而引入新的不确定度的前提下,通过连续缓慢改变可调制激光波长,使得探测器得到的干涉信号产生连续周期的相位变化;激光器调制吸收光谱从初始锁定的吸收峰移动到另一个锁定峰,查表得到前后两个锁定吸收峰的波长变化,同时计算得到前后PGC解调出的相位差值,根据波长扫描技术计算得出初始闲区长度;之后利用微探头光纤激光干涉仪相对距离测量精度高的优点,实现待测距离的实时测量;本发明继承了激光测距精度高的优点,克服了其只能测量相对距离,无法测量初始闲区长度的缺点,在精密测量领域具有显著的技术优势。

    一种多自由度微棱镜式干涉传感头的装配对准方法及装置

    公开(公告)号:CN116878377A

    公开(公告)日:2023-10-13

    申请号:CN202310968508.X

    申请日:2023-08-02

    摘要: 本发明属于光纤干涉测量技术领域,本发明公开了一种多自由度微棱镜式干涉传感头的装配对准方法及装置。本发明建立与微棱镜探头组成元件五自由度姿态有关的空间‑光纤耦合效率和干涉信号对比度的目标函数,确立约束条件并辨识装配元件各自由度权重和装配精度,设计基于自适应梯度混合迭代算法的多自由度微夹持器调控系统,实现耦合效率和对比度平衡优化的自动对准,采用慢胶固化粘接与实时监测微调控方式,实现毫米级微探头元件装配,并测试装配完成的干涉传感头整体性能。本发明解决了现有毫米级微棱镜式传感头装配因手工实现而导致的装配精度低、一致性差的问题,保证微棱镜式传感头装配质量与效率。

    基于工作温度分段设定的高精度激光稳频方法与装置

    公开(公告)号:CN116454719A

    公开(公告)日:2023-07-18

    申请号:CN202310359174.6

    申请日:2023-04-06

    IPC分类号: H01S3/102 H01S3/131 H01S3/137

    摘要: 本发明提出基于工作温度分段设定的高精度激光稳频方法与装置。涉及激光干涉测量领域。本发明提出了工作温度分段设定的方法,通过划分环境温度区间,选定目标预热温度点,进行分区间预热与稳频,可使激光器快速、准确地工作在目标预热温度上。本发明的有效稳频环境温度范围至‑20~40℃,激光稳频相对准确度达到1.0×10‑8,可以解决传统固定预热温度方案下由于环境温度过低或者过高而无法建立有效热平衡状态,导致激光器不能正常工作的问题。

    微探头偏振光相位调制的干涉位移测量系统及方法

    公开(公告)号:CN116878394B

    公开(公告)日:2024-04-19

    申请号:CN202310968540.8

    申请日:2023-08-02

    IPC分类号: G01B11/02

    摘要: 本发明属于激光测量领域,本发明公开了一种微探头偏振光相位调制的干涉位移测量系统及方法,利用相位调制器对半导体激光器输出的正交偏振光分量进行正弦相位调制,通过偏振分光棱镜分成参考光和测量光,两束光分别由微探头内置反射面和被测目标镜反射回环形器,在与环形器连接的光纤偏振元件上进行干涉,干涉光信号由光电探测器接收并解调处理,解算得到被测目标镜的位移量。本发明采用相位调制器对参考光和测量光进行相位调制实现微探头干涉位移测量,解决了现有微探头相位调制干涉仪中采用光源频率内调制引入的伴随光强调制误差和位移量程受调制深度限制的问题,同时降低了光源稳频的难度,实现了微探头大量程、高精度干涉位移测量。

    微探头激光调频干涉测距方法及系统

    公开(公告)号:CN117192560B

    公开(公告)日:2024-04-09

    申请号:CN202310968558.8

    申请日:2023-08-02

    IPC分类号: G01S17/08

    摘要: 本发明属于光纤干涉测量技术领域,公开了微探头激光调频干涉测距方法及系统,本发明在不需要引入绝对式激光测距仪从而引入新的不确定度的前提下,通过连续缓慢改变可调制激光波长,使得探测器得到的干涉信号产生连续周期的相位变化;激光器调制吸收光谱从初始锁定的吸收峰移动到另一个锁定峰,查表得到前后两个锁定吸收峰的波长变化,同时计算得到前后PGC解调出的相位差值,根据波长扫描技术计算得出初始闲区长度;之后利用微探头光纤激光干涉仪相对距离测量精度高的优点,实现待测距离的实时测量;本发明继承了激光测距精度高的优点,克服了其只能测量相对距离,无法测量初始闲区长度的缺点,在精密测量领域具有显著的技术优势。

    基于特征曲线重构的调谐光源稳频方法及系统

    公开(公告)号:CN117410822A

    公开(公告)日:2024-01-16

    申请号:CN202311467885.1

    申请日:2023-11-06

    摘要: 本发明属于调制吸收光谱稳频技术领域,公开了基于特征曲线重构的调谐光源稳频方法及系统,本发明搭建了一套基于光源内调制式吸收光谱稳频控制方法及系统,针对微探头激光干涉测量基准难以兼顾大幅度高带宽调频和高精度稳频、导致大量程测量下难以获得高相对精度的问题,提出一种基于鉴频曲线重构的大幅度高带宽调频下高精度激光稳频方法,在大幅度高带宽调制条件下,建立鉴频特征曲线畸变模型和畸变矫正模型,利用矫正模型反馈调节相位补偿并重构鉴频曲线,明确锁定点与稳频基准点的对应关系,实现气体分子吸收基准点锁定跟踪,精准控制大范围高带宽调谐中心频率。

    基于特征曲线重构的调谐光源稳频方法及系统

    公开(公告)号:CN117410822B

    公开(公告)日:2024-04-16

    申请号:CN202311467885.1

    申请日:2023-11-06

    摘要: 本发明属于调制吸收光谱稳频技术领域,公开了基于特征曲线重构的调谐光源稳频方法及系统,本发明搭建了一套基于光源内调制式吸收光谱稳频控制方法及系统,针对微探头激光干涉测量基准难以兼顾大幅度高带宽调频和高精度稳频、导致大量程测量下难以获得高相对精度的问题,提出一种基于鉴频曲线重构的大幅度高带宽调频下高精度激光稳频方法,在大幅度高带宽调制条件下,建立鉴频特征曲线畸变模型和畸变矫正模型,利用矫正模型反馈调节相位补偿并重构鉴频曲线,明确锁定点与稳频基准点的对应关系,实现气体分子吸收基准点锁定跟踪,精准控制大范围高带宽调谐中心频率。

    一种多自由度微棱镜式干涉传感头的装配对准方法及装置

    公开(公告)号:CN116878377B

    公开(公告)日:2024-04-05

    申请号:CN202310968508.X

    申请日:2023-08-02

    摘要: 本发明属于光纤干涉测量技术领域,本发明公开了一种多自由度微棱镜式干涉传感头的装配对准方法及装置。本发明建立与微棱镜探头组成元件五自由度姿态有关的空间‑光纤耦合效率和干涉信号对比度的目标函数,确立约束条件并辨识装配元件各自由度权重和装配精度,设计基于自适应梯度混合迭代算法的多自由度微夹持器调控系统,实现耦合效率和对比度平衡优化的自动对准,采用慢胶固化粘接与实时监测微调控方式,实现毫米级微探头元件装配,并测试装配完成的干涉传感头整体性能。本发明解决了现有毫米级微棱镜式传感头装配因手工实现而导致的装配精度低、一致性差的问题,保证微棱镜式传感头装配质量与效率。