-
公开(公告)号:CN118067395B
公开(公告)日:2024-06-21
申请号:CN202410471349.7
申请日:2024-04-19
Applicant: 哈尔滨工业大学
Abstract: 本发明提出了一种远场羽流弱光区在轨多通道光学成像监测系统及方法,属于航天等离子体推进技术领域,首先对于某一型号的等离子体推进器,在地面和在轨条件分别搭建远场羽流多通道光学成像监测装置,在地面条件下启动等离子体推进器,拍摄羽流成像照片;基于不同工况参数和羽流成像照片进行拟合,建立二者映射的数据库;当在轨等离子体推进器运行时,开启装置拍摄羽流成像照片;将在轨羽流成像照片与地面羽流成像照片进行比对,判断在轨推进器所处状况。
-
公开(公告)号:CN118067398A
公开(公告)日:2024-05-24
申请号:CN202410471352.9
申请日:2024-04-19
Applicant: 哈尔滨工业大学
Abstract: 本发明属于航天等离子体推进领域,提供一种多通道霍尔推进器推力分布在轨光学监测方法。步骤1:当多通道霍尔推进器在设定工况下正常运行时,机械臂控制成像监测装置获取正对的多通道霍尔推进器的成像;步骤2:基于成像,利用谱线比方法计算等离子不同放电通道出口处的离子密度分布;步骤3:利用离子密度分布计算不同通道产生的推力并合成总推力,与设定工况下设定推力进行对比;步骤4:根据比对结果,判断是否调整工况,直至计算推力与设定推力一致。用以解决不同放电通道之间的电离状态不同,导致放电通道间的等离子体密度不同,最终导致离子喷出后推进器产生的推力失衡的问题。
-
公开(公告)号:CN118067395A
公开(公告)日:2024-05-24
申请号:CN202410471349.7
申请日:2024-04-19
Applicant: 哈尔滨工业大学
Abstract: 本发明提出了一种远场羽流弱光区在轨多通道光学成像监测系统及方法,属于航天等离子体推进技术领域,首先对于某一型号的等离子体推进器,在地面和在轨条件分别搭建远场羽流多通道光学成像监测装置,在地面条件下启动等离子体推进器,拍摄羽流成像照片;基于不同工况参数和羽流成像照片进行拟合,建立二者映射的数据库;当在轨等离子体推进器运行时,开启装置拍摄羽流成像照片;将在轨羽流成像照片与地面羽流成像照片进行比对,判断在轨推进器所处状况。
-
公开(公告)号:CN117420083A
公开(公告)日:2024-01-19
申请号:CN202311743392.6
申请日:2023-12-19
Applicant: 哈尔滨工业大学 , 北京东方计量测试研究所
Abstract: 一种等离子体侵蚀痕量产物在线监测装置及方法,涉及等离子体光谱测试技术领域,解决的技术问题为“如何进行等离子体推进器工部件侵蚀痕量产物监测”,该装置包括金属屏蔽罩,以及设置于所述金属屏蔽罩内部的第一凸透镜、第一反射镜、分光棱镜、第二凸透镜、光栅以及第二反射镜,以及设置于所述金属屏蔽罩外部的光电倍增管和分析处理设备;所述金属屏蔽罩侧壁上固定有入射光狭缝和出射光狭缝,所述出射光狭缝与所述光电倍增管连接,所述光电倍增管与所述分析处理设备连接;该装置及方法设计了光谱仪设备对痕量产物谱线光强进行监测,建立痕量物质辐射谱线强度和光强信号波动关系,以获得痕量产物绝对密度,可靠性高,监测灵敏。
-
公开(公告)号:CN115394467B
公开(公告)日:2023-04-28
申请号:CN202211075665.X
申请日:2022-09-05
Applicant: 哈尔滨工业大学 , 黑龙江省科学院高技术研究院
IPC: G21F9/30
Abstract: 一种利用空化活化水处理核废料中铝硅酸盐的方法,它涉及一种处理核废料中铝硅酸盐的方法。本发明为了解决现有核废料中铝硅酸盐处理方法是利用强酸强碱反复浸泡,使其溶解,但这种做法不仅效率低,而且会对乏燃料存储设施造成严重的腐蚀的问题。本发明的具体步骤为:步骤一、制备活化水;步骤二、制备氢氧化钠与硝酸溶液;步骤三、利用步骤二中获得的溶液溶解铝硅酸盐沉淀。本发明属于核废料处理技术领域。
-
公开(公告)号:CN111983122B
公开(公告)日:2021-07-20
申请号:CN202010779460.4
申请日:2020-08-05
Applicant: 哈尔滨工业大学
Abstract: 利用气相色谱串联三重四级杆质谱检测环境介质中123种多环芳烃的方法。本发明属于污染物检测技术领域。本发明的目的在于解决目前针对PAHs的检测方法能够检测的种类少、检测分析时间长、检测限高以及由于检测过程无法实现同分异构体的分离而导致检测结果误差较大的技术问题。方法:一、将123种PAHs根据基团及控制要求分成3类;二、单标进样根据确定的目标物的增益电压、定性离子对、定量离子对、及其对应的碰撞能设定质谱参数;三、混标进样确定气相参数;四、制作标准曲线;五、对实际样品中的PAHs进行萃取净化得待分析样品;六、实际样品检测。本发明实现同分异构体的分离与定性定量检测灵敏度高、重复性好,分析时间缩短至35min~40min。
-
公开(公告)号:CN108896803B
公开(公告)日:2020-08-18
申请号:CN201810510171.7
申请日:2018-05-24
Applicant: 哈尔滨工业大学
IPC: G01R11/185 , G01R11/17
Abstract: 本发明公开了一种基于温度补偿的电能表计量精度优化方法,所述方法包括如下步骤:步骤一、热仿真建模;步骤二、近似建模;步骤三、计量模块建模;步骤四、温度补偿。本发明基于温度补偿的电能表计量精度优化方法填补了已有补偿方法没有考虑到温度变化影响采样电阻、参考电压进而导致计量误差的空白,对电能表在全温度下的计量一致性做出了优化。本发明用于在智能电能表产品的设计阶段,根据产品可能的温度运行环境,利用温度仿真和近似建模,通过理论计算,得到能够实现智能电能表在全温度环境下运行的计量功率一致性优化的方法。
-
公开(公告)号:CN106870248A
公开(公告)日:2017-06-20
申请号:CN201710110917.0
申请日:2017-02-28
Applicant: 哈尔滨工业大学
CPC classification number: Y02E10/226 , F03B11/00 , F03B11/008 , G06F17/5018 , G06F17/5086
Abstract: 本发明提出了一种水轮机泄水锥打4孔位置的确定方法,包括采用数值模拟方法进行数值模拟计算,获得泄水锥低压区范围,利用高速摄影成像系统对尾水涡带细节部分进行观测,确定涡带初生的地方,根据涡带初生的地方实施打孔措施,所述打孔措施为对泄水锥打4孔,所述打4孔的泄水锥为沿着短直型的泄水锥轴心相对穿孔成2孔的泄水锥,再在2孔的泄水锥的基础上,在相对靠下的位置垂直对穿2孔。本发明解决了现有技术中水轮机组内部的非定常流动问题,尤其是尾水管内涡带及相应压力脉动问题。
-
公开(公告)号:CN104390762A
公开(公告)日:2015-03-04
申请号:CN201410680792.1
申请日:2014-11-24
Applicant: 哈尔滨工业大学
IPC: G01M10/00
Abstract: 用于流体机械流场精细化测量的实验装置,它涉及一种流体实验装置。本发明为了解决现有测试系统中流体储存困难、组件更换复杂、及更重要的复杂流体机械扭曲流场测量困难的难题,专门设计了该精细化测量的综合实验装置。本发明的尾水罐(1)、水泵组(2)、流量监控装置、稳流法兰栅(6)、伸缩节(10)和待测量模型装置(9)顺次连接组成封闭的循环检测通路,示踪粒子添加机构(12)安装在水泵组(2)和流量监控装置之间,流体储存系统(8)与流量监控装置连接,流场精细化测试系统(11)设置在待测量模型装置(9)的侧面,测功机(14)同轴安装在待测量模型装置(9)上方。本发明用于流体实验。
-
公开(公告)号:CN114617973B
公开(公告)日:2024-08-16
申请号:CN202210232894.1
申请日:2022-03-09
Applicant: 哈尔滨工业大学
IPC: A61K47/34 , A61K31/7048 , A61K31/405 , A61K31/4164 , A61P29/00 , A61P1/02 , D04H1/728 , D01D5/00 , D01F8/14 , D01F1/10
Abstract: 本发明涉及一种具有智能控释功能的3D梯度微纳米纤维结构及其制备方法和应用。所述3D梯度微纳米纤维结构包括多层纤维膜,且3D梯度微纳米纤维结构的纤维表面呈褶皱状;多层纤维膜均由可生物降解材料A、可生物降解材料B、增塑剂和高挥发性溶剂经静电纺丝制备而成,可生物降解材料A具有形状记忆性能,可生物降解材料B的降解速率比可生物降解材料A的降解速率快;各层纤维膜中含有的可生物降解材料A与含有的可生物降解材料B的质量比相同或不相同。本发明通过形状记忆性能控制纤维表面褶皱→光滑→褶皱实现3D梯度微纳米纤维结构的药物智能控释;此外,通过控制温度能够实现3D微纳米纤维结构在整体上的梯度智能控释。
-
-
-
-
-
-
-
-
-