-
公开(公告)号:CN115011936A
公开(公告)日:2022-09-06
申请号:CN202210550868.3
申请日:2022-05-20
申请人: 哈尔滨工业大学(深圳)
摘要: 本发明提供了一种基于周期性损耗介质的选择性分光吸热涂层及其制备方法,所述基于周期性损耗介质的选择性分光吸热涂层从上到下依次包括三周期的损耗介质层,所述损耗介质层为ITO层/Si层、ITO层/SiC层、或WO3层/Si层。采用本发明的技术方案,可以同时实现分光和吸热一体,可同时兼顾725‑1100 nm光伏带内的反射和光伏带外太阳光谱范围内的光吸收,且高温稳定性好,在400℃高温真空环境下可以稳定100 h以上,性能没有变坏趋势。
-
公开(公告)号:CN109883073B
公开(公告)日:2020-09-25
申请号:CN201910188508.1
申请日:2019-03-13
申请人: 哈尔滨工业大学(深圳)
IPC分类号: F24S70/225 , F24S70/30 , C23C14/35 , C23C14/06
摘要: 本发明属于材料制备技术领域,提供了一种高温稳定的准光学微腔结构太阳光谱选择性吸收涂层及其制备方法。所述涂层由下而上依次是金属红外反射层、准光学微腔吸收体、光学减反层部分三部分,所述涂层材料含有金属W,电介质Al2O3和SiO2,衬底为机械抛光的不锈钢304,易于制备获得。相对于已知涂层具体以下优点:(1)太阳吸收率高;(2)高温稳定性好;(3)光谱吸收范围易于调节,易于产业化应用。
-
公开(公告)号:CN115011936B
公开(公告)日:2023-08-22
申请号:CN202210550868.3
申请日:2022-05-20
申请人: 哈尔滨工业大学(深圳)
摘要: 本发明提供了一种基于周期性损耗介质的选择性分光吸热涂层及其制备方法,所述基于周期性损耗介质的选择性分光吸热涂层从上到下依次包括三周期的损耗介质层,所述损耗介质层为ITO层/Si层、ITO层/SiC层、或WO3层/Si层。采用本发明的技术方案,可以同时实现分光和吸热一体,可同时兼顾725‑1100 nm光伏带内的反射和光伏带外太阳光谱范围内的光吸收,且高温稳定性好,在400℃高温真空环境下可以稳定100 h以上,性能没有变坏趋势。
-
公开(公告)号:CN109651853A
公开(公告)日:2019-04-19
申请号:CN201811472503.3
申请日:2018-12-04
申请人: 哈尔滨工业大学(深圳)
摘要: 本发明属于材料制备技术领域,具体涉及一种高温空气中稳定的MoSi2-SiO2复合物光热涂层及其制备方法。所述方法采用二氧化硅溶胶与MoSi2粉末混合,形成黑色悬浊液后旋涂于载体上,干燥后得到复合层,再将步骤(2)制得的二氧化硅溶胶旋涂于复合层上形成减反层,得到复合物光热涂层。本发明提出的涂层具有高温稳定性好,制备过程简便,成本低廉,适宜规模化生产等诸多优势。同时还有较高的太阳能吸收率。具有重要的实用价值。同时该涂层的制备方法具有普适性,可以制备不同填充材料的功能性涂层。
-
公开(公告)号:CN113699482B
公开(公告)日:2023-08-22
申请号:CN202110988627.2
申请日:2021-08-26
申请人: 哈尔滨工业大学(深圳)
IPC分类号: C23C14/06 , C23C14/08 , C23C14/10 , C23C14/35 , F24S70/225
摘要: 本发明提供了一种可用于800℃及以上的准光学微腔基选择性吸收涂层,其由下至上依次包括红外反射层、准光学微腔吸收体和光学减反层,所述光学减反层包括Al2O3减反层、SiO2减反层中的至少一种;所述准光学微腔吸收体从下到上依次包括第一准光学微腔选择性吸收层、超高温陶瓷材料层、第二准光学微腔选择性吸收层;所述第一准光学微腔选择性吸收层和第二准光学微腔选择性吸收层为超高温陶瓷材料‑Al2O3或SiO2复合材料;所述红外反射层的材质为超高温陶瓷材料;所述超高温陶瓷材料为碳化物、氮化物、硼化物中的至少一种。采用本发明的技术方案具有高光谱选择性;而且具有高温热稳定性。
-
公开(公告)号:CN113699482A
公开(公告)日:2021-11-26
申请号:CN202110988627.2
申请日:2021-08-26
申请人: 哈尔滨工业大学(深圳)
IPC分类号: C23C14/06 , C23C14/08 , C23C14/10 , C23C14/35 , F24S70/225
摘要: 本发明提供了一种可用于800℃及以上的准光学微腔基选择性吸收涂层,其由下至上依次包括红外反射层、准光学微腔吸收体和光学减反层,所述光学减反层包括Al2O3减反层、SiO2减反层中的至少一种;所述准光学微腔吸收体从下到上依次包括第一准光学微腔选择性吸收层、超高温陶瓷材料层、第二准光学微腔选择性吸收层;所述第一准光学微腔选择性吸收层和第二准光学微腔选择性吸收层为超高温陶瓷材料‑Al2O3或SiO2复合材料;所述红外反射层的材质为超高温陶瓷材料;所述超高温陶瓷材料为碳化物、氮化物、硼化物中的至少一种。采用本发明的技术方案具有高光谱选择性;而且具有高温热稳定性。
-
公开(公告)号:CN115747740A
公开(公告)日:2023-03-07
申请号:CN202211439359.X
申请日:2022-11-17
申请人: 哈尔滨工业大学(深圳)
摘要: 本发明属于材料制备技术领域,具体涉及基于Ge2Sb2Te5的红外隐身与辐射散热薄膜及其制备方法。本发明的红外隐身与辐射调控选择性发射薄膜材料为Ni和Ge2Sb2Te5,衬底为高纯硅片。选择性发射薄膜包含为Ni/晶态Ge2Sb2Te5/Ni/非晶态Ge2Sb2Te5四层结构,中间层晶态Ge2Sb2Te5通过沉积后退火得到。该结构可同时实现在3‑5、8‑13μm的“大气窗口”区间低发射,和在窗口外5‑8μm的高发射,同时实现了隐身和散热的双功能效果。
-
公开(公告)号:CN111987181B
公开(公告)日:2022-01-11
申请号:CN202010893234.9
申请日:2020-08-31
申请人: 哈尔滨工业大学(深圳)
IPC分类号: H01L31/055 , H01L31/18
摘要: 本发明提供了一种基于一维光子晶体异质结构的太阳光谱分光‑吸热薄膜,其包括吸收涂层和一维光子晶体异质结构分光器,所述一维光子晶体异质结构分光器位于吸收涂层上;所述吸收涂层包括金属陶瓷层,所述一维光子晶体异质结构分光器为基于Si/SiO2光子晶体的异质结构多层膜。采用本发明的技术方案,可以有效地将太阳光谱分谱成一个光伏应用波段和两个光热应用波段,其中光伏波段的太阳能量用于光伏发电,光热波段的太阳能量用于集热发电,为全光谱太阳能的综合利用提供器件基础;可以在不用增加一维光子晶体重复单元的前提下,有效增加光伏应用波段的反射率,同时抑制两个光热波段反射率的提高。
-
公开(公告)号:CN109651853B
公开(公告)日:2020-12-25
申请号:CN201811472503.3
申请日:2018-12-04
申请人: 哈尔滨工业大学(深圳)
摘要: 本发明属于材料制备技术领域,具体涉及一种高温空气中稳定的MoSi2‑SiO2复合物光热涂层及其制备方法。所述方法采用二氧化硅溶胶与MoSi2粉末混合,形成黑色悬浊液后旋涂于载体上,干燥后得到复合层,再将步骤(2)制得的二氧化硅溶胶旋涂于复合层上形成减反层,得到复合物光热涂层。本发明提出的涂层具有高温稳定性好,制备过程简便,成本低廉,适宜规模化生产等诸多优势。同时还有较高的太阳能吸收率。具有重要的实用价值。同时该涂层的制备方法具有普适性,可以制备不同填充材料的功能性涂层。
-
公开(公告)号:CN111987181A
公开(公告)日:2020-11-24
申请号:CN202010893234.9
申请日:2020-08-31
申请人: 哈尔滨工业大学(深圳)
IPC分类号: H01L31/055 , H01L31/18
摘要: 本发明提供了一种基于一维光子晶体异质结构的太阳光谱分光-吸热薄膜,其包括吸收涂层和一维光子晶体异质结构分光器,所述一维光子晶体异质结构分光器位于吸收涂层上;所述吸收涂层包括金属陶瓷层,所述一维光子晶体异质结构分光器为基于Si/SiO2光子晶体的异质结构多层膜。采用本发明的技术方案,可以有效地将太阳光谱分谱成一个光伏应用波段和两个光热应用波段,其中光伏波段的太阳能量用于光伏发电,光热波段的太阳能量用于集热发电,为全光谱太阳能的综合利用提供器件基础;可以在不用增加一维光子晶体重复单元的前提下,有效增加光伏应用波段的反射率,同时抑制两个光热波段反射率的提高。
-
-
-
-
-
-
-
-
-