-
公开(公告)号:CN119511213A
公开(公告)日:2025-02-25
申请号:CN202411517850.9
申请日:2024-10-29
Applicant: 哈尔滨工程大学 , 上海无线电设备研究所
IPC: G01S7/36 , G06F18/10 , G06F18/213 , G06F18/241 , G06N3/0464 , G06N3/045
Abstract: 基于卷积注意力机制和排斥损失的Yolov8网络的雷达有源复合干扰信号识别与参数测量方法,本发明为了解决现有的干扰信号识别方法工作模式单一、鲁棒性差的问题,将干扰识别问题转换目标检测问题,并应用目标检测框架来检测、识别和测量干扰信号的参数,并引入了CBAM注意力机制,增强网络对图像的特征提取能力,提高识别率。此外,还引入了排斥损失函数,在干扰信号时频图像重叠较多时也能保持良好的回归预测效果。本文网络在低干噪比下对大多数信号有良好的检测识别性能。本发明属于雷达干扰信号检测与识别技术领域。
-
公开(公告)号:CN116243248A
公开(公告)日:2023-06-09
申请号:CN202310218279.X
申请日:2023-03-09
Applicant: 哈尔滨工程大学 , 上海无线电设备研究所
Abstract: 本发明提供一种基于多标签分类网络的多分量干扰信号识别方法,将一维干扰信号经过时频变换转换成时频图像,利用MobileViT‑v2模块的全局特征提取能力对多分量干扰信号进行高效分类识别。此发明解决了当前多类别分类网络对训练集中未曾出现的信号组合无法识别的问题,对训练样本数的要求较低,突破了现有的雷达有源干扰识别方法的应用局限。
-
公开(公告)号:CN119398102A
公开(公告)日:2025-02-07
申请号:CN202411520948.X
申请日:2024-10-29
Applicant: 哈尔滨工程大学 , 上海无线电设备研究所
Abstract: 本发明公开一种雷达干扰决策方法和装置、系统、存储介质,包括:步骤S1、根据雷达‑干扰机对抗环境,得到雷达工作模式转换与干扰机释放干扰信号间的潜在联系;步骤S2、将当前雷达工作模式对应的威胁等级作为环境状态参数输入到基于自适应贪婪调节和优先双重经验回放的竞争双重深度Q网络决策结构中进行价值评估、经验录入、经验抽取和参数更新操作,得到雷达干扰决策结果。采用本发明的技术方案,解决传统强化学习算法存在策略收敛效果较差和经验存储方式不足的问题。
-
公开(公告)号:CN112731309A
公开(公告)日:2021-04-30
申请号:CN202110011684.5
申请日:2021-01-06
Applicant: 哈尔滨工程大学 , 上海无线电设备研究所
Abstract: 本发明属于雷达干扰信号识别技术领域,具体涉及一种基于双线性高效神经网络的有源干扰识别方法。本发明针对现有干扰信号在低干噪比下识别难度大、依靠先验知识的问题,设计了更智能化的干扰识别方法。本发明通过对多种干扰信号进行建模分析,从信号时频图像的角度,采用双线性高效神经网络进行识别,在低干噪比下依然能获得很高的准确率。仿真实验证明了双线性高效神经网络用来识别干扰信号的有效性,相对于人工提取特征的传统方式,精度更高、更为简便。本发明无需干扰信号特征的先验知识,在低干噪比下具有一定的鲁棒性,突破了现有的雷达有源干扰识别方法的应用局限。
-
公开(公告)号:CN117031391A
公开(公告)日:2023-11-10
申请号:CN202311080688.4
申请日:2023-08-25
Applicant: 哈尔滨工程大学 , 上海无线电设备研究所
IPC: G01S3/14
Abstract: 基于多通道NYFR折叠采样均匀线阵结构的DOA估计方法及系统,它属于宽带电子侦察领域。本发明解决了现有宽带数字接收机技术不能对宽带信号进行测向、需要处理的数据量大以及数据处理过程复杂的问题。本发明方法为:步骤一、利用均匀线阵接收远场入射信号;将均匀线阵的每个阵元接收的信号分别作为一个NYFR折叠采样通道的输入;步骤二、在NYFR折叠采样通道内,利用宽带预选滤波器对输入信号进行预处理后,将预处理后信号与本振脉冲串进行混频,混频信号再依次经过低通滤波器和ADC处理,得到NYFR折叠采样通道的输出;步骤三、根据各个NYFR折叠采样通道的输出对各个入射信号的DOA进行估计。本发明方法可以应用于入射信号的DOA估计。
-
公开(公告)号:CN116243249A
公开(公告)日:2023-06-09
申请号:CN202310218280.2
申请日:2023-03-09
Applicant: 哈尔滨工程大学 , 上海无线电设备研究所
Abstract: 本发明提供一种基于深度强化学习的雷达智能干扰抑制决策方法,通过将深度学习网络与强化学习算法相结合,使得智能体雷达能够在一定底噪环境中与干扰机所释放的干扰信号不断进行博弈操作从而学习并优化干扰抑制策略;通过对抑制前后的回波信号进行脉压操作以验证抑制后恢复效果。此发明避免了人工判决在速度和准确性方面的不足,优化了传统强化学习算法需要Q‑Table进行成果存储调用的策略效果,提高了决策系统在干扰判决特征和干扰抑制动作方面的可拓展性。
-
公开(公告)号:CN112731309B
公开(公告)日:2022-09-02
申请号:CN202110011684.5
申请日:2021-01-06
Applicant: 哈尔滨工程大学 , 上海无线电设备研究所
Abstract: 本发明属于雷达干扰信号识别技术领域,具体涉及一种基于双线性高效神经网络的有源干扰识别方法。本发明针对现有干扰信号在低干噪比下识别难度大、依靠先验知识的问题,设计了更智能化的干扰识别方法。本发明通过对多种干扰信号进行建模分析,从信号时频图像的角度,采用双线性高效神经网络进行识别,在低干噪比下依然能获得很高的准确率。仿真实验证明了双线性高效神经网络用来识别干扰信号的有效性,相对于人工提取特征的传统方式,精度更高、更为简便。本发明无需干扰信号特征的先验知识,在低干噪比下具有一定的鲁棒性,突破了现有的雷达有源干扰识别方法的应用局限。
-
公开(公告)号:CN114942415B
公开(公告)日:2024-10-25
申请号:CN202210541063.2
申请日:2022-05-17
Applicant: 哈尔滨工程大学
IPC: G01S7/41
Abstract: 本发明公开了一种基于自编码器的多频段子带信号融合方法,将深度神经网络用于信号融合,在发射端发射多子带线性调频信号,在接收端对接收的多子带回波信号进行去斜处理得到多子带距离包络,将全频带包络作为训练数据输入全频带自编码器,得到全频带解码器与全频带编码;再将多子带距离包络和全频带编码分别作为训练数据与标签送入DNN训练,得到多子带编码器;最后将多子带编码器与全频带解码器组合为自编码器,这样就可以将任意一组多子带距离包络输入自编码器,即可得到全频带的距离包络,提升信号的利用率,提高距离分辨率。
-
公开(公告)号:CN118112521A
公开(公告)日:2024-05-31
申请号:CN202410214897.1
申请日:2024-02-27
Applicant: 哈尔滨工程大学
Abstract: 一种雷达信号多模态预分选方法,它涉及一种多模态预分选方法。本发明的目的在于从大量交错的雷达脉冲序列中快速的识别出每个脉冲所属的雷达类型,降低脉冲丢失对分选结果的影响。本发明将相同雷达类型的脉冲聚集到一类,使辐射源脉冲TOA序列的误差比率降低,信噪比提高,降低了交叠脉冲序列的复杂程度,最终提高分选的准确率。本发明属于雷达信号处理技术领域。
-
公开(公告)号:CN116776143A
公开(公告)日:2023-09-19
申请号:CN202310398886.9
申请日:2023-04-14
Applicant: 哈尔滨工程大学
IPC: G06F18/214 , G06F18/24 , G06F18/25 , G06N3/0455 , G06N3/088
Abstract: 本发明公开了一种雷达辐射源的射频特征提取方法,获取待提取特征的射频信号并进行预处理,分别输入至预先训练的用于特征提取的网络1和网络2,网络1和网络2均为堆栈自编码器网络、且均包含相同层数的多层编解码器,网络2最后一层编码器输出提取的射频特征;训练过程包括理想射频信号数据集和建模射频信号数据集分别输入网络1和网络2均进行分层预训练和全局训练至训练完毕,得到训练后的网络1和网络2。本发明能够在以信号特征为约束的情况下,分割开辐射源信号的信号特征和射频特征,使得提取的射频特征更完整,并可将提取的射频特征用于辐射源个体识别、干扰抑制等对射频特征准确性要求较高的应用领域。
-
-
-
-
-
-
-
-
-