多级气水分离装置
    3.
    发明公开

    公开(公告)号:CN109200679A

    公开(公告)日:2019-01-15

    申请号:CN201710547551.3

    申请日:2017-07-06

    IPC分类号: B01D45/04

    摘要: 本发明公开了一种多级气水分离装置,多级气水分离装置包括:壳体,壳体上设有分别与壳体的内腔连通的气水混合物进口、出气口和出液口;波形板分离器,波形板分离器设在壳体的内腔中,波形板分离器包括多个波形板,多个波形板分别沿壳体的径向布置且沿壳体的周向间隔开,相邻波形板之间形成气流流道,波形板分离器与壳体之间限定出重力分离腔。根据本发明的多级气水分离装置,在气水分离的过程中,使得气水混合物可以由气水混合物进口进入壳体的内腔内,先经由重力分离腔进行重力分离,经重力分离腔分离后的气水混合物可以进一步流经波形板分离器进行分离,分离出的气体可以经由出气口排出,分离出的液体例如水等可以经由出液口排出。

    一种两性聚醚醚酮离子交换膜及其制备方法

    公开(公告)号:CN113817197A

    公开(公告)日:2021-12-21

    申请号:CN202110991399.4

    申请日:2021-08-26

    摘要: 本发明提供了一种两性聚醚醚酮离子交换膜及其制备方法。两性聚醚醚酮具有以下结构单元:基础单元:磺化单元:胺化单元其中,R1和R2分别独立地选自C1‑C5的烷基、C6‑C10的芳基或C5‑C10的杂芳基,两性聚醚醚酮的分子量为23000~38000,磺化单元的摩尔比为60~90%,胺化单元的摩尔比为1~5%;制备方法包括:步骤S1,将两性聚醚醚酮分散在有机溶剂中,得到铸膜液;步骤S2,采用辊涂工艺将铸膜液涂覆至基材上形成涂层,得到涂覆基材;步骤S3,对涂覆基材进行干燥,得到两性聚醚醚酮离子交换膜。利用本申请两性聚醚醚酮为原料、采用辊涂方式制作离子交换膜,方法简单易于推广。

    稳流装置
    5.
    发明公开
    稳流装置 审中-实审

    公开(公告)号:CN109268686A

    公开(公告)日:2019-01-25

    申请号:CN201710580952.9

    申请日:2017-07-17

    IPC分类号: F17D1/02 F17D3/01 F17D5/00

    摘要: 本发明公开了一种稳流装置,稳流装置包括:壳体、第一板体、可变形容器、气源和控制器,第一板体安装在壳体内以将密闭腔体分为相互导通的第一腔体和第二腔体,可变形容器设置在第一腔体内且可变形容器内限定出容纳气体的气室,气室具有气体预压,可变形容器被构造成在气体预压小于壳体内循环液体压力时收缩,在气体预压大于壳体内循环液体压力时扩张,气源通过气室接管与气室连通,控制器分别与气源和气室相连,控制器根据循环流体回路中的压力控制气源向气室内提供气体以形成气体预压。根据本发明实施例的稳流装置可以有效地吸收循环流体回路中的流量和压力波动,从而保证循环流体回路中循环流体流量稳定,提高流场品质。

    用于液流电池的氢气浓度控制系统

    公开(公告)号:CN112151840A

    公开(公告)日:2020-12-29

    申请号:CN201910822055.3

    申请日:2019-09-02

    IPC分类号: H01M8/04791 H01M8/04276

    摘要: 本发明提出一种用于液流电池的氢气浓度控制系统,该系统包括:电解液储罐,用于存放电解液,并接收来自燃料电池的氢气浓度较低的气体,使电解液中混合的氢气与氢气浓度较低的气体混合后生成氢气浓度较高的气体,并传输至燃料电池;燃料电池,用于接收氢气浓度较高的气体,并与空气中的氧气发生反应,以消耗氧气及系统中的氢气,使氢气浓度降低,并将产生的氢气浓度较低的气体发送至电解液储罐。本发明能够解决液流电池系统的氢气安全问题,同时减少排放,使系统更加安全环保,并且不消耗惰性气体,不用定期补充,减少了运行维护成本,同时也可以降低对于化工系统设计的要求,降低对于场地和设备防爆等级的要求,使系统的总成本降低。

    乏汽余热循环系统
    7.
    发明授权

    公开(公告)号:CN110318834B

    公开(公告)日:2024-07-12

    申请号:CN201810265660.0

    申请日:2018-03-28

    摘要: 本发明公开了一种乏汽余热循环系统,乏汽余热循环系统包括凝汽式热电联产机组、背压式热电联产机组、能量分离装置、热网机组和控制装置,背压式热电联产机组的蒸汽进口与凝汽式热电联产机组蒸汽出口相连,能量分离装置具有进汽口、冷端出口、热端出口,进汽口与蒸汽出口相连,第一换热器与冷端出口相连,第二换热器与热端出口以及背压式热电联产机组蒸汽出口相连,且第一换热器和第二换热器均与凝汽式热电联产机组相连,控制装置被构造成可控制背压式热电联产机组在直接循环模式与可调供热模式之间切换运行。根据本发明实施例的乏汽余热循环系统的结构简单、可以在不同的热负荷条件下精确调节,实现热供应量的稳定调节以及供电量的稳定供给。

    一种膜电导率测试装置及方法
    9.
    发明公开

    公开(公告)号:CN115684283A

    公开(公告)日:2023-02-03

    申请号:CN202211049869.6

    申请日:2022-08-30

    IPC分类号: G01N27/06 G01R27/02

    摘要: 本发明提出一种膜电导率测试装置及方法,所述装置包括第一模块、待测膜和第二模块,所述第一模块和所述第二模块紧贴所述待测膜两侧设置,其中,所述第一模块和所述第二模块远离所述待测膜一侧均依次包括板框、铂电极和保温板,所述板框中部开设半槽圆孔,所述待测膜放置在所述板框上形成的所述半槽圆孔处。本发明的膜电导率测试装置及方法,测试装置采用封闭系统,溶液密封在腔体中,不会产生随温度升高造成溶液挥发带来的影响,容积固定,加液量恒定,能够更加准确地测量阻抗。可以测量各种不同组分的溶液下的测试数据,增加测试装置的适用性,同时,本发明的测试装置能够对垂直方向膜的电导率进行测试,实现跨膜方向电导率测试。

    电解液节能输送控制装置、方法及液流电池系统

    公开(公告)号:CN112151834A

    公开(公告)日:2020-12-29

    申请号:CN202010267916.9

    申请日:2020-04-08

    摘要: 本发明提出一种电解液节能输送控制装置、方法及液流电池系统,该控制装置包括:正极泵;负极泵;第一流量计,设置在正极泵的出口管路,用于检测正极泵输出的正极电解液的流量;第二流量计,设置在负极泵的出口管路,用于检测负极泵输出的负极电解液的流量;控制器,分别与正极泵、负极泵、第一流量计和第二流量计相连,用于根据正极电解液的流量对正极泵的转速进行控制,以调节正极泵输出的正极电解液的流量,以及根据负极泵输出的负极电解液的流量对负极泵的转速进行控制,以调节负极泵输出的负极电解液的流量。本发明能够在确保电解液流量和压力可靠控制的前提下,节约液流电池系统的电耗。