一种判别对抗网络的恶意应用检测方法和系统

    公开(公告)号:CN113127872B

    公开(公告)日:2022-07-12

    申请号:CN202110411779.6

    申请日:2021-04-16

    IPC分类号: G06F21/56 G06N3/04 G06N3/08

    摘要: 本发明公开了一种判别对抗网络的恶意应用检测方法和系统,所述方法包括如下步骤:建立应用的API调用神经网络;建立应用的权限神经网络;建立应用的操作码序列神经网络;分别向上述三种神经网络输入对应的特征,获取分别输出的三种特征矢量;将三种输出的特征矢量输入到判别对抗网络中,输出应用的识别结果。述方法和系统通过建立判别对抗网络(DAN)架构对恶意应用进行识别,所述判别对抗网络(DAN)将传统的GAN中的生成器替换为鉴别器,所述判别对抗网络的其中一个鉴别器可以检测恶意软件,另一个鉴别器对混淆无感知,可以识别具有不同域的混淆和未混淆恶意应用,并消除了学习中混淆带来的偏差。

    一种判别对抗网络的恶意应用检测方法和系统

    公开(公告)号:CN113127872A

    公开(公告)日:2021-07-16

    申请号:CN202110411779.6

    申请日:2021-04-16

    IPC分类号: G06F21/56 G06N3/04 G06N3/08

    摘要: 本发明公开了一种判别对抗网络的恶意应用检测方法和系统,所述方法包括如下步骤:建立应用的API调用神经网络;建立应用的权限神经网络;建立应用的操作码序列神经网络;分别向上述三种神经网络输入对应的特征,获取分别输出的三种特征矢量;将三种输出的特征矢量输入到判别对抗网络中,输出应用的识别结果。述方法和系统通过建立判别对抗网络(DAN)架构对恶意应用进行识别,所述判别对抗网络(DAN)将传统的GAN中的生成器替换为鉴别器,所述判别对抗网络的其中一个鉴别器可以检测恶意软件,另一个鉴别器对混淆无感知,可以识别具有不同域的混淆和未混淆恶意应用,并消除了学习中混淆带来的偏差。