一种基于多维时间序列的诈骗电话分析方法

    公开(公告)号:CN109756632A

    公开(公告)日:2019-05-14

    申请号:CN201811554685.9

    申请日:2018-12-19

    Abstract: 本发明公开了一种基于多维时间序列的诈骗电话分析方法,该方法包括:将每个号码的所有通话作为一个整体,每间隔时间段选取与诈骗呼叫相关性较大的行为特征,计算每个号码在该间隔时间段内的特征统计量,并设定是否为诈骗呼叫的标签;将每个号码在设定的间隔时间段的多个行为特征按时间顺序排列,整合形成在一个完整时间段内的一个多维时间序列数据集,多个号码形成多个多维时间序列数据集;将带标签的多个多维时间序列数据集,代入LSTM网络模型训练;根据某号码在该一个完整时间段的模型训练,预测该号码在该完整时间段的下一个间隔时间段时的通话呼叫是否为诈骗呼叫。通过本发明的方法,能够从众多的话单数据中分析预判是否为诈骗呼叫。

    一种基于协同网络表示学习的电信异常检测方法

    公开(公告)号:CN109474756A

    公开(公告)日:2019-03-15

    申请号:CN201811367747.5

    申请日:2018-11-16

    CPC classification number: H04M3/2281 H04W12/12

    Abstract: 本发明公开了一种基于协同网络表示学习的电信异常检测方法,属于数据挖掘与机器学习领域。首先训练xgboost分类器,测试每条CDR数据的欺诈类别概率构成待检测的信令数据集。提取主被叫用户构成通联二部图P,根据评分从信令数据集中选取疑似欺诈的主叫节点生成种子节点集合Z,并将存在共同被叫邻居的任意两个主叫添加到协同网络集合G。通联二部图P扩展出待选的被叫节点集合B,并移除不满足条件的被叫用户,保留下来的被叫节点更新到集合B'中;扩展并更新种子节点集合Z',去重合并更新协同网络G',降维得到嵌入向量进行建模预测,取异常得分最大的N个作为检测结果输出。本发明保证了生成的协同网络的质量,提高计算速度,可以适应不同的数据特点。

Patent Agency Ranking