一种恶意代码溯源方法、系统、设备及存储介质

    公开(公告)号:CN115906083A

    公开(公告)日:2023-04-04

    申请号:CN202211489368.X

    申请日:2022-11-25

    IPC分类号: G06F21/56 G06N20/00

    摘要: 本申请实施例提供了一种恶意代码溯源方法、系统、设备及存储介质,用以解决现有的APT恶意代码攻击溯源分析准确率较低的技术问题。方法包括:实时收集正在进行攻击的APT恶意代码组织数据;将所述正在进行攻击的APT恶意代码组织数据输入预先训练的恶意代码组织溯源模型中,输出预测的APT恶意代码组织溯源结果;其中,所述恶意代码组织溯源模型是通过反汇编语言训练的。本申请将实时攻击的恶意代码转化为Asm2Vec函数所需类型,语义表示学习模型Asm2Vec揭示恶意代码汇编语言之间语义关系,不需要任何先验知识,也不需要数据之间的正确映射。只需在向量库中搜索即可实现同源分析,以针对特定组织的攻击实时精确防御。

    基于BP神经网络的系统资源预测方法及系统

    公开(公告)号:CN114661463A

    公开(公告)日:2022-06-24

    申请号:CN202210234741.0

    申请日:2022-03-09

    摘要: 本发明提供了基于BP神经网络的系统资源预测方法及系统,方法包括提取电网数据库中表征系统资源利用信息的数据集合,所述数据集合中包括多个采集数据项,每个采集数据项包括采集时间和当前采集时间下的数据值;根据所述数据集合,基于时段特征、用户特征和功能特征形成BP神经网络模型的输入数;将所述输入数据输入训练好的BP神经网络模型中,得到当前输入数据下的系统资源使用量。本发明利用机器学习方法分析预测资源需求量,对提取到的数据集合进行合理选取,使得输入数据的简洁性和与预测数据的相关性得到提高,减少了预测模型的复杂度,同时合理地指导系统中资源的分配,最终达到降本增效的目的。