一种基于软聚类的联邦异构图学习方法

    公开(公告)号:CN119691477A

    公开(公告)日:2025-03-25

    申请号:CN202411847303.7

    申请日:2024-12-16

    Abstract: 本发明提出一种基于软聚类的联邦异构图学习方法,以解决图结构数据的非独立同分布、训练过程中客户端参与程度不一致导致的联邦学习模型性能下降问题。本发明将图结构数据的结点属性特征和结构特征进行解耦训练,并根据不同客户端的图结构数据结构特征分布的相似性进行个性化的软聚类,最终在聚类内依据客户端在训练中的参与程度以及模型性能进行加权聚合,得到个性化迭代后的模型。本发明将软聚类与联邦图学习两种领域的前沿技术结合,有助于解决联邦图学习中拥有不同图结构数据分布、不同训练程度的客户端对模型性能的负面影响,保护本地数据隐私安全,同时训练更贴合客户端实际数据分布的个性化模型,提高联邦学习模型的训练效率和准确性。

    一种工业负荷曲线异常识别方法及系统

    公开(公告)号:CN117671380A

    公开(公告)日:2024-03-08

    申请号:CN202311693230.6

    申请日:2023-12-11

    Abstract: 本发明提出一种工业负荷曲线异常识别方法,包括以下步骤:步骤S1、对工业负荷曲线图像进行预处理,确定横纵坐标轴像素列位置;步骤S2、对预处理后的曲线图像进行曲线提取;步骤S3、根据提取到的曲线,横纵坐标轴的像素列位置,依据异常像素列位置检测是否有跳变或掉零异常,依据掉零和跳变的曲线趋势特征和异常区域的像素点差方法区分出具体故障类型,根据像素列方法计算出异常时间;步骤S4、根据提取到的曲线,横纵坐标轴的像素列位置,根据像素列差分方法检测是否存在无数据或不刷新的异常,根据像素列方法计算出异常时间;本发明能够有效识别工业负荷曲线图像中的掉零、跳变、不刷新,无数据等各类异常,为工业系统的预警提供有力的技术支撑。

Patent Agency Ranking