-
公开(公告)号:CN118783524A
公开(公告)日:2024-10-15
申请号:CN202410818970.6
申请日:2024-06-24
申请人: 国网辽宁省电力有限公司大连供电公司 , 东北大学
摘要: 本发明公开了一种虚拟电厂内部成员动态聚合调度方法,包括建立虚拟电厂内部成员联盟效益函数、建立联盟效益势态差函数、建立新能源互补净值模型、建立虚拟电厂成员动态聚合准则和分裂准则、得到虚拟电厂内部成员动态聚合调度结果。本发明建立了联盟效益势态差函数和新能源互补净值模型,并在建立聚合准则和分裂准则时加入联盟效益势态差函数和新能源互补净值模型,充分考虑了联盟聚合和分裂过程中的影响因素,有效提高聚合准则和分裂准则的准确性,使得到的虚拟电厂内部成员动态聚合结果更加贴近实际电力情况。
-
公开(公告)号:CN117709524A
公开(公告)日:2024-03-15
申请号:CN202311697596.0
申请日:2023-12-12
申请人: 国网辽宁省电力有限公司鞍山供电公司 , 国家电网有限公司 , 东北大学
摘要: 本发明一种基于贝叶斯优化的钢铁行业碳排放预测方法及系统,属于电力能源预测技术领域,该方法首先对数据进行预处理,通过Person相关系数确定输入特征变量,然后,输入到改进的Stacking集成学习模型中,以最后输出的误差指标作为目标函数,通过贝叶斯优化算法调整Stacking集成学习双层学习器的超参数,最后通过误差补偿模型进一步优化预测结果。该预测方法通过使用Person相关系数分析了钢铁行业特征变量之间的关系,综合考虑了与碳排放关联性强的影响因素,在进行碳排放预测时使用了改进的Stacking集成学习模型,采用误差补偿模型对Stacking集成学习模型误差进行优化,大大提高了预测精度。
-
公开(公告)号:CN117689078A
公开(公告)日:2024-03-12
申请号:CN202311743786.1
申请日:2023-12-19
申请人: 国网辽宁省电力有限公司鞍山供电公司 , 国家电网有限公司 , 东北大学
IPC分类号: G06Q10/04 , G06Q10/063 , G06Q50/04 , G06Q50/06 , G06Q50/26 , G06N5/022 , G06N20/20 , G06N3/0499 , G06N3/084 , G06N7/01 , G06F18/214 , G06F18/21 , G06F18/25
摘要: 本发明公开了一种基于电力数据驱动的钢铁行业碳排放监测方法,包括以下步骤:S1:电力设备数据采集,建立电‑碳实时数据集;S2:输入电‑碳实时数据集,依据知识图谱算法建立电‑碳关系函数;S3:通过电‑碳关系函数,运用机器学习算法建立基于电力数据的碳排放转换模型;S4:通过融合优化算法和交叉验证算法对碳排放转换模型进行优化,构建不同时间维度的电‑碳监测模型。本发明通过企业电力数据,挖掘“电力‑能源消费‑碳排放”的深层次关联体系,应用关联知识图谱理论、机器学习算法、交叉验证与融合优化算法构建基于电力数据驱动的钢铁行业碳排放监测的预测模型,对钢铁企业的碳减排潜力进行挖掘。
-
-