基于回音壁微腔激光器的可实现全光波长连续调谐的系统

    公开(公告)号:CN119401200A

    公开(公告)日:2025-02-07

    申请号:CN202411526076.8

    申请日:2024-10-30

    Applicant: 安徽大学

    Abstract: 本发明公开了基于回音壁微腔激光器的可实现全光波长连续调谐的系统,包括:微腔激光实现装置和调节模块;微腔激光实现装置用于发射泵浦光至回音壁微腔并产生回音壁微腔激光;调节模块用于连续精细调节泵浦光的输出波长,进而实现回音壁微腔激光的全光波长连续调谐。本发明提出的全光波长连续调谐实现方法操作简单,只需改变泵浦激光光源的波长,利用光热效应对输出微腔激光进行连续波长调谐。相比于其他基于光热材料,机械调谐等方法,本发明提出的全光调谐技术手段具有实现装置简单,易于操作等优点。此外,基于回音壁微腔激光的全光调谐技术,利用回音壁微腔内密集的模式激发激光模式为前提,具有激光器阈值低,尺寸小,制作成本低等优点。

    同侧耦合反馈式可调光学微腔延时器

    公开(公告)号:CN109581595B

    公开(公告)日:2021-06-15

    申请号:CN201910085992.5

    申请日:2016-04-20

    Applicant: 安徽大学

    Abstract: 本分案申请涉及光延时器领域,现有的芯片可集成型的光延时器系统复杂度高,多个微腔耦合状态同步调节困难。针对上述问题,本分案公开了一种同侧耦合反馈式可调光学微腔延时器,包括光信号输入端、光信号输出端、光学微腔、耦合器件、第一耦合器和第二耦合器,第一耦合器的端口A与光信号输入端相连,端口B通过耦合器件与光学微腔耦合,端口C与第二耦合器的端口C相连,第二耦合器的端口A通过耦合器件与光学微腔耦合,端口B与光信号输出端相连。本分案利用反馈机制将出射光反馈并注入光学微腔的腔内,增加了光信号传输的有效路径以及额外色散的可调延时,系统复杂度低,延时效果好,可通过对反馈条件的控制,进一步调节延时效果,从而达到延时可调。

    全光纤结构可调腔增益激光自混合振动、位移、速度传感方法和系统

    公开(公告)号:CN109945903B

    公开(公告)日:2021-06-08

    申请号:CN201910363367.2

    申请日:2019-04-30

    Applicant: 安徽大学

    Abstract: 本发明激光自混合传感技术领域,具体涉及全光纤结构可调腔增益激光自混合振动、位移、速度传感方法,泵浦光耦合注入激光器的谐振腔内,所述光纤激光器的增益介质对谐振腔内的信号光进行放大后耦合输出,输出的信号经过可调移频单元形成具有频差的移频光出射到待测目标表面后返回,使得激光器的谐振腔内最终输出信号光的功率发生变化,通过对最终输出信号光的功率变化进行检测并解调分析,得出待测目标的振动或位移或速度信息。为实现上述传感方法,本发明提供了全光纤结构可调腔增益激光自混合振动、位移、速度传感系统。本发明具有光路柔性传输,信号腔增益可调和可在线监测的有益效果。

    基于多纵模自混合效应的应变传感测量装置及方法

    公开(公告)号:CN110806274B

    公开(公告)日:2020-12-15

    申请号:CN201911141654.5

    申请日:2018-04-12

    Applicant: 安徽大学

    Abstract: 本分案申请涉及光学测量技术领域,具体为一种基于多纵模自混合效应的应变传感测量装置及方法,测量装置包括多纵模激光器、传感单元、振动目标、滑动装置、分光元件、光电探测器、信号预处理单元和信号处理单元,测量方法为:振动目标发生振动,多纵模激光器出射激光经传感单元后入射到振动目标上,然后再反馈回多纵模激光器谐振腔内形成自混合信号,上述过程中传感单元发生改变引起自混合信号波形改变,通过调节滑动装置使振动目标发生微移,形成在不同激光器外腔长度下的自混合信号,利用光电探测器采集不同外腔长度下的自混合信号,再利用信号预处理单元和信号处理单元进行处理,即可得出传感单元的变化,本案测量成本低、光路简单、测量精度高。

    一种多路激光自混合光开关

    公开(公告)号:CN108767646B

    公开(公告)日:2020-07-31

    申请号:CN201810490122.1

    申请日:2018-05-21

    Applicant: 安徽大学

    Abstract: 本发明涉及光开关技术领域,尤其涉及一种多路激光自混合光开关,包括激光器、第一分束元件、可调谐衰减器、反馈物、压电陶瓷、控制器、第二分束元件、N个光滤波器和N个准直元件,反馈物固定于压电陶瓷上,压电陶瓷由控制器控制,N个光滤波器的中心频率不同,N个准直元件分别设于N个光滤波器的输出侧,激光器出射激光经第一分束元件分为两束,一束经可调谐衰减器后入射到反馈物上,另一束经第二分束元件分为N束后分别射入N个光滤波器进行滤波,入射到反馈物上的激光经反射后沿原路反馈回激光器内形成自混合激光,每个光滤波器输出的激光经位于其后的准直透镜准直后最终输出;本发明结构简单、调节方便,扩展能力强,能够满足快速光切换的要求。

    基于多纵模自混合效应的五角棱镜型角度传感测量装置及方法

    公开(公告)号:CN110631514A

    公开(公告)日:2019-12-31

    申请号:CN201910941460.7

    申请日:2018-05-18

    Applicant: 安徽大学

    Abstract: 本分案申请涉及光学测量技术领域,尤其涉及一种基于多纵模自混合效应的五角棱镜型角度传感测量装置及方法,该装置包括多纵模激光器、传感单元、振动目标、滑动装置、分束器、光电探测器、信号预处理单元和信号处理单元;所述传感单元包括转盘和五角棱镜,所述五角棱镜的五个角中有一个为直角,五角棱镜水平放置于转盘上,且五角棱镜的两个直角边所在的侧面的相交线位于转盘的圆心处。本装置结构简单、体积小、成本低,能够实现非接触实时高精度测量,传感单元为无源光学传感器,本身无需供电,并且测试装置光路为单光路,受环境干扰小且结构简单、调节光路方便。

    全光纤结构可调腔增益激光自混合振动、位移、速度传感方法和系统

    公开(公告)号:CN109945903A

    公开(公告)日:2019-06-28

    申请号:CN201910363367.2

    申请日:2019-04-30

    Applicant: 安徽大学

    Abstract: 本发明激光自混合传感技术领域,具体涉及全光纤结构可调腔增益激光自混合振动、位移、速度传感方法,泵浦光耦合注入激光器的谐振腔内,所述光纤激光器的增益介质对谐振腔内的信号光进行放大后耦合输出,输出的信号经过可调移频单元形成具有频差的移频光出射到待测目标表面后返回,使得激光器的谐振腔内最终输出信号光的功率发生变化,通过对最终输出信号光的功率变化进行检测并解调分析,得出待测目标的振动或位移或速度信息。为实现上述传感方法,本发明提供了全光纤结构可调腔增益激光自混合振动、位移、速度传感系统。本发明具有光路柔性传输,信号腔增益可调和可在线监测的有益效果。

    微腔芯片型激光自混合振动、位移、速度传感系统

    公开(公告)号:CN109932049A

    公开(公告)日:2019-06-25

    申请号:CN201910232513.8

    申请日:2016-04-20

    Applicant: 安徽大学

    Abstract: 本分案申请涉及激光自混合传感技术领域,现有的激光自混合振动、位移、速度传感系统难以实现高精度、高探测灵敏度的传感测量且结构难以做到真正意义的微型化,无法与现代通讯系统的芯片做到很好的集成,无法大规模集成开发和应用。针对上述问题,本分案申请提供一种微腔芯片型激光自混合振动、位移、速度传感系统,该系统基于激光自混合干涉测量原理,利用光学微腔构建激光自混合传感系统,实现了高精度,高灵敏度的传感测量,同时因系统具有微型化的优点,更加适合于大规模芯片制造加工,更加适合于狭小场合、复杂环境下的现场测量,并且能够与目前光纤通讯中的商用系统充分结合,低成本,高效地实现远程及特殊应用场合传感及数据处理。

    微腔芯片型激光自混合距离传感系统

    公开(公告)号:CN109818245A

    公开(公告)日:2019-05-28

    申请号:CN201910249844.2

    申请日:2016-04-20

    Applicant: 安徽大学

    Abstract: 本分案申请涉及激光自混合传感技术领域,现有的激光自混合振动距离传感系统难以实现高精度、高探测灵敏度的传感测量且结构难以做到真正意义的微型化,无法与现代通讯系统的芯片做到很好的集成,无法大规模集成开发和应用。针对上述问题,本分案申请提供一种微腔芯片型激光自混合距离传感系统,该系统基于激光自混合干涉测量原理和光学微腔调谐原理,利用光学微腔构建激光自混合传感系统,实现了高精度,高灵敏度的传感测量,同时因系统具有微型化的优点,更加适合于大规模芯片制造加工,更加适合于狭小场合、复杂环境下的现场测量,并且能够与目前光纤通讯中的商用系统充分结合,低成本,高效地实现远程及特殊应用场合传感及数据处理。

    微腔芯片型激光自混合振动、位移、速度传感方法

    公开(公告)号:CN105716704B

    公开(公告)日:2019-05-28

    申请号:CN201610255764.4

    申请日:2016-04-20

    Applicant: 安徽大学

    Abstract: 本发明涉及激光自混合传感技术领域,现有的激光自混合振动、位移、速度传感系统难以实现高精度、高探测灵敏度的传感测量且结构难以做到真正意义的微型化,无法与现代通讯系统的芯片做到很好的集成,无法大规模集成开发和应用。针对上述问题,本发明提供一种微腔芯片型激光自混合振动、位移、速度传感方法及系统,该方法基于激光自混合干涉测量原理,利用光学微腔构建激光自混合传感系统,实现了高精度,高灵敏度的传感测量,同时因系统具有微型化的优点,更加适合于大规模芯片制造加工,更加适合于狭小场合、复杂环境下的现场测量,并且能够与目前光纤通讯中的商用系统充分结合,低成本,高效地实现远程及特殊应用场合传感及数据处理。

Patent Agency Ranking