一种基于自定义旋转框的麦穗检测方法

    公开(公告)号:CN114596429B

    公开(公告)日:2024-04-19

    申请号:CN202210201369.3

    申请日:2022-02-28

    Applicant: 安徽大学

    Abstract: 本发明涉及一种基于自定义旋转框的麦穗检测方法,包括如下步骤:步骤S100,拍摄观测区群体麦穗图像;步骤S200,改进YoloV5目标检测网络的检测框定义方式和损失函数,获得基于自定义旋转框的YoloV5目标检测网络模型;步骤S300,对改进后的基于自定义旋转框的YoloV5目标检测网络模型进行训练;步骤S400,利用训练好的基于自定义旋转框的YoloV5目标检测网络模型对观测区群体麦穗图像进行检测,并获得利用旋转框框出的麦穗检测结果图像。本方法有效提高了小麦麦穗检测精度,且能够在任何复杂条件下使用,无需任何辅助设备(材料),拥有良好的泛用性。此外,有效解决了照片中因拍摄角度导致的检测框背景较多的情况,目标检测网络模型的角度检测精度也得到了提高。

    一种基于自定义旋转框的麦穗检测方法

    公开(公告)号:CN114596429A

    公开(公告)日:2022-06-07

    申请号:CN202210201369.3

    申请日:2022-02-28

    Applicant: 安徽大学

    Abstract: 本发明涉及一种基于自定义旋转框的麦穗检测方法,包括如下步骤:步骤S100,拍摄观测区群体麦穗图像;步骤S200,改进YoloV5目标检测网络的检测框定义方式和损失函数,获得基于自定义旋转框的YoloV5目标检测网络模型;步骤S300,对改进后的基于自定义旋转框的YoloV5目标检测网络模型进行训练;步骤S400,利用训练好的基于自定义旋转框的YoloV5目标检测网络模型对观测区群体麦穗图像进行检测,并获得利用旋转框框出的麦穗检测结果图像。本方法有效提高了小麦麦穗检测精度,且能够在任何复杂条件下使用,无需任何辅助设备(材料),拥有良好的泛用性。此外,有效解决了照片中因拍摄角度导致的检测框背景较多的情况,目标检测网络模型的角度检测精度也得到了提高。

    基于改进YoloV4的田间小麦赤霉病发生程度评估方法

    公开(公告)号:CN114120203B

    公开(公告)日:2024-11-26

    申请号:CN202111452227.6

    申请日:2021-12-01

    Abstract: 本发明涉及一种基于改进YoloV4的田间小麦赤霉病发生程度评估方法,包括如下步骤:S100、拍摄观测区群体麦穗图像;S200、利用训练好的改进YoloV4目标检测网络模型对观测区群体麦穗图像进行检测并获得单个麦穗图像;S300、统计麦穗个数得到麦穗总数,同时对单个麦穗图像进行特征提取和随机森林分类并统计患病麦穗个数;S400、根据麦穗总数和患病麦穗个数计算群体麦穗的病穗率,按照国家相关标准得到该群体麦穗的赤霉病发生程度。本方法提高了小麦赤霉病发生程度的预测精度,且能够在复杂条件下使用,无需辅助设备或材料,拥有良好的泛用性,有效解决了拍摄角度导致的麦穗遮挡而无法检测的情况,目标检测网络模型的检测精度也得到提高,缩短了模型训练时间。

    基于可穿戴式麦穗采集装置的麦穗计数方法

    公开(公告)号:CN112419323B

    公开(公告)日:2023-05-02

    申请号:CN202011321459.3

    申请日:2020-11-23

    Abstract: 本发明特别涉及一种基于可穿戴式麦穗采集装置的麦穗计数方法,包括如下步骤:S100、通过可穿戴式采集装置采集田间麦穗图像并将麦穗图像发送到服务器中;S200、服务器对采集到的图像进行预处理后输入至训练好的分割模型中进行分割后得到麦穗分割图;S300、将麦穗分割图输入至训练好的计数模型中统计麦穗数量并发送至采集装置上显示。采集装置可以方便的对田间麦穗进行图像采集,再将采集到的图像发送至服务器上进行麦穗的计数处理,这样采集装置无需进行数据处理,可以减少其体积便于携带;服务器上设置的分割模型可以方便的进行麦穗分割和计数,最后将统计的麦穗数量发送回采集装置上进行显示,这样对现场的工作人员来说,操作非常简便。

    基于改进YoloV4的田间小麦赤霉病发生程度评估方法

    公开(公告)号:CN114120203A

    公开(公告)日:2022-03-01

    申请号:CN202111452227.6

    申请日:2021-12-01

    Abstract: 本发明涉及一种基于改进YoloV4的田间小麦赤霉病发生程度评估方法,包括如下步骤:S100、拍摄观测区群体麦穗图像;S200、利用训练好的改进YoloV4目标检测网络模型对观测区群体麦穗图像进行检测并获得单个麦穗图像;S300、统计麦穗个数得到麦穗总数,同时对单个麦穗图像进行特征提取和随机森林分类并统计患病麦穗个数;S400、根据麦穗总数和患病麦穗个数计算群体麦穗的病穗率,按照国家相关标准得到该群体麦穗的赤霉病发生程度。本方法提高了小麦赤霉病发生程度的预测精度,且能够在复杂条件下使用,无需辅助设备或材料,拥有良好的泛用性,有效解决了拍摄角度导致的麦穗遮挡而无法检测的情况,目标检测网络模型的检测精度也得到提高,缩短了模型训练时间。

Patent Agency Ranking