-
公开(公告)号:CN118314114A
公开(公告)日:2024-07-09
申请号:CN202410514388.0
申请日:2024-04-26
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院) , 山东山科智控科技创新有限公司
IPC: G06T7/00 , G06V10/25 , G06V10/42 , G06V10/44 , G06V10/764 , G06V10/766 , G06V10/80 , G06V10/82 , G06N3/045 , G06N3/0464 , G06N3/08
Abstract: 本发明提出钢材表面缺陷检测方法及系统,涉及缺陷检测技术领域。包括获取钢材表面图像;将钢材表面图像输入至CSTRNet模型串联的CTR模块中,在每个CTR模块中,利用并行的稀疏自注意力模块和卷积模块分别提取钢材表面图像的全局特征和局部特征;将各中间层CTR模块提取的特征依次输入至串联的双层GDC模块中,并利用双层GDC模块将CTR模块提取的浅层特征和深层特征进行双向融合,得到钢材表面缺陷的预测框位置、缺陷置信度和缺陷分类类别。本发明在模型中加入稀疏自注意力SA模型结构、卷积和Transformer相互协同的CTR模型结构以及GDC瓶颈卷积结构,提升了缺陷检测速度和检测精度。
-
公开(公告)号:CN118134877A
公开(公告)日:2024-06-04
申请号:CN202410278960.8
申请日:2024-03-12
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院) , 山东山科智控科技创新有限公司
IPC: G06T7/00 , G06V10/764 , G06V10/44 , G06V10/82 , G06V10/80 , G06N3/0464 , G06N3/0455 , G06N3/08
Abstract: 本公开涉及钢材表面缺陷检测技术领域,提出了一种基于深度学习的钢材表面缺陷检测方法,包括如下步骤:获取待检测的钢材图片数据并进行预处理;构建视觉Transformer网络与卷积神经网络串联的MTRNet模型,对预处理后的图像,采用瓶颈卷积,基于CTR模块进行微小局部缺陷识别,提取浅层特征;基于ACTR模块捕捉细长划痕缺陷,提取深层特征;对提取的浅层特征和深层特征基于卷积神经网络进行融合;对融合后的特征进行分类,得到缺陷识别结果。构建了算法速度快和检测精度高的新模型MTRNet模型,实现基于深度学习的钢材表面缺陷检测。
-
公开(公告)号:CN118094421A
公开(公告)日:2024-05-28
申请号:CN202311873284.0
申请日:2023-12-29
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院) , 山东山科智控数字化科技有限公司
IPC: G06F18/2433 , G06N3/045 , G06N3/0455 , G06N3/0475 , G06N3/0499 , G06N3/094
Abstract: 本发明属于基于特定计算机模型的数据监测技术领域,更具体地,涉及面向机械状态监测的异常数据检测方法。所述方法包括获取机械监测数据的历史数据,并分为训练集和测试集;将训练集和测试集数据进行分段,并提取每一段的时域特征属性信息;构建机械监测数据异常检测模型:所述机械监测数据异常检测模型包括生成器和判别器,所述生成器和判别器均包括编码器和解码器;将训练集时域特征属性信息输入模型中并训练;将测试集时域特征属性信息输入模型中实现监测数据的异常检测。本发明解决了现有技术中在处理海量数据时,出现的识别速度慢、准确率低的问题。
-
公开(公告)号:CN118861540A
公开(公告)日:2024-10-29
申请号:CN202410848806.X
申请日:2024-06-27
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院) , 山东山科智控数字化科技有限公司
IPC: G06F18/15 , G06N3/0464 , G06F18/211 , G06F18/213 , G06N3/084 , G06N3/0985
Abstract: 本发明属于数据处理技术领域,更具体地,涉及一种基于卷积神经网络的机械设备监测的缺失数据恢复方法、装置及计算机可读存储介质。包括获取机械监测数据以及缺失数据范围,并进行分段处理;对分段完成的每段待恢复数据进行数据预处理后采用谐波小波变换得到基矩阵;使用数据恢复模型对每段数据的基矩阵进行数据恢复得到恢复后的每段数据;对得到恢复后的每段数据进行分段处理的逆过程,将所有的恢复后的每段数据拼装到一起得到完整的恢复数据。本发明解决了现有技术中计算量大且对于连续型大范围缺失的补全效果不佳,且无法解决张量的一个或几个超平面缺失的问题。
-
-
-