-
公开(公告)号:CN115083174B
公开(公告)日:2024-06-07
申请号:CN202210638529.0
申请日:2022-06-07
申请人: 杭州电子科技大学
摘要: 本发明公开了一种基于合作式多智能体强化学习的交通信号灯控制方法。该方法克服了传统强化学习单独控制各个路口的信号灯,没有考虑它们之间的相关性的缺点,提出了一种双层协调控制策略,通过局部合作机制和全局合作机制对路网中的交通信号灯进行协调控制。同时,该方法将车辆排放因素考虑在内,可以在改善路网交通状态的同时尽可能的减少车辆排放。
-
公开(公告)号:CN115083174A
公开(公告)日:2022-09-20
申请号:CN202210638529.0
申请日:2022-06-07
申请人: 杭州电子科技大学
摘要: 本发明公开了一种基于合作式多智能体强化学习的交通信号灯控制方法。该方法克服了传统强化学习单独控制各个路口的信号灯,没有考虑它们之间的相关性的缺点,提出了一种双层协调控制策略,通过局部合作机制和全局合作机制对路网中的交通信号灯进行协调控制。同时,该方法将车辆排放因素考虑在内,可以在改善路网交通状态的同时尽可能的减少车辆排放。
-
公开(公告)号:CN109374532B
公开(公告)日:2021-03-30
申请号:CN201811541673.2
申请日:2018-12-17
申请人: 杭州电子科技大学
摘要: 本发明公开了一种基于传递熵和自适应融合估计移动源排放气体遥测误差补偿方法。本发明有机结合测量对象的先验知识和最优估计理论,能够从带噪观测序列中得到真实值的最优估计。首先,通过超限学习机方法建立多干扰下遥测误差预测模型。然后,提出了一种虚拟观测分解模型,并利用虚拟观测分解模型对观测序列进行多序列分解。之后,将实际测量过程转化为多传感器虚拟观测过程,并建立多传感器虚拟观测过程的数学模型。最后,引入传递熵和自适应卡尔曼滤波对多虚拟观测序列进行融合重构,从而得到测量序列的最优估计。本发明能够有效补偿外部环境干扰引起的测量误差,提高遥感检测技术的环境适用性和抗干扰能力。
-
-