基于图像处理的梁底裂纹检测方法、系统、装置及介质

    公开(公告)号:CN111008956B

    公开(公告)日:2024-06-28

    申请号:CN201911103773.1

    申请日:2019-11-13

    IPC分类号: G06T7/00 G06T3/4038 G06T7/60

    摘要: 本发明涉及一种基于图像处理的梁底裂纹检测方法、系统、装置和介质,方法包括获取桥梁底面的多个原始裂纹图像,并对所有原始裂纹图像进行预处理,得到多个处理裂纹图像;从所有处理裂纹图像中获取多个待拼接裂纹图像,基于SURF图像处理方法,将所有待拼接裂纹图像进行拼接,得到待检测裂纹图像;获取预设的神经网络裂纹检测模型,并利用所述神经网络裂纹检测模型对所述待检测裂纹图像进行检测,得到目标裂纹图像;对所述目标裂纹图像进行分析,得到裂纹检测数据。本发明能避免图像拍摄距离对梁底裂纹识别和检测的影响,提高裂纹检测精度,能够避免微小裂纹的图像被当做噪声过滤掉,极其适用于微小裂纹的检测。

    一种基于上下文信息的非线性拓展的人脸幻构方法

    公开(公告)号:CN109886869B

    公开(公告)日:2022-12-20

    申请号:CN201811199243.7

    申请日:2018-10-15

    摘要: 本发明公开了一种基于上下文信息的非线性拓展的人脸超分辨率方法,该方法首先通过上下文块对上下文信息进行抽样,以丰富人脸图像表示的先验信息,并在正则化目标函数时利用设置阈值对上下文字典进行降维,然后利用高斯核函数将原始数据转化为核空间,通过协作表示建立高低分辨率图像之间的非线性关系,最后采用上下文残差学习重建出待测图像。本方法通过高斯核函数建立高低分辨率图像之间的非线性映射,并将高维特征空间中的非线性问题表示为线性问题。此外,它还使用上下文残差学习来获得更准确的图像表示的先验信息,提高了重建的性能。

    一种图像超分辨率重建方法、系统及计算机存储介质

    公开(公告)号:CN110458758A

    公开(公告)日:2019-11-15

    申请号:CN201910687010.X

    申请日:2019-07-29

    IPC分类号: G06T3/40 G06T5/50

    摘要: 本发明涉及一种图像超分辨率重建方法、系统及计算机存储介质,其方法包括以下步骤,S1,将原始图像重塑为固定大小尺寸的图像,得到原始高分辨率图像,将原始高分辨率图像进行插值下采样,得到低分辨率图像;S2,基于生成网络对低分辨率图像进行基于边缘增强的超分辨率重建,得到超分辨率图像;S3,基于判别网络和原始高分辨率图像对超分辨率图像进行真伪判别。本发明其将单一的低分辨图像通过边缘细节信息增强表达,在原始超分辨率重建生成网络中加入边缘增强融合网络提高了图像超分辨率重建性能,获得更清晰的重建图像;另外,判别网络也可以提升边缘增强生成对抗网络的重建性能。

    一种农作物种植种类推荐信息处理装置、方法及存储介质

    公开(公告)号:CN111488520B

    公开(公告)日:2023-09-26

    申请号:CN202010198233.2

    申请日:2020-03-19

    摘要: 本发明提供一种农作物种植种类推荐信息处理装置、方法及存储介质,装置包括:土壤原始数据采集模块、合成处理模块、土壤合成数据集计算模块、目标参数计算模块和推荐信息获得模块,土壤原始数据采集模块用于从待测土壤中采集多个土壤原始数据,根据多个土壤原始数据得到土壤原始数据集;合成处理模块用于将土壤原始数据集进行合成处理,得到土壤合成数据集;土壤合成数据集计算模块用于对土壤合成数据集进行计算,得到目标参数,目标参数用于计算目标平面Z;目标参数计算模块用于对目标参数进行计算,得到目标平面Z。本发明解决了土壤数据不平衡问题、小样本多分类问题,减少种植决策者的主观意向和其他客观因素影响。

    基于组合学习的人脸超分辨率方法及装置

    公开(公告)号:CN110580680B

    公开(公告)日:2022-07-05

    申请号:CN201910849721.2

    申请日:2019-09-09

    IPC分类号: G06T3/40

    摘要: 本发明公开了一种基于组合学习的人脸超分辨率方法及装置,属于人脸图像超分辨率领域,该方法包括:对下采样得到的低分辨率人脸图像进行组件分割;将低分辨率人脸图像和分割后的人脸组件图像块进行分块操作,分出相互重叠的图像块;将图像块输入各组件生成对抗网络产生高分辨率组件图像块,由上采样后的低分辨率人脸背景图像生成高分辨率人脸背景图像;通过融合网络提取高分辨率图像块特征及人脸背景图像组件特征;将两种特征进行融合后,重建得到目标人脸组件图像块;通过人脸组件在人脸图像中的坐标点,将目标人脸组件图像块对应合并至高分辨率人脸背景图像中,形成高分辨率人脸图像。本发明可以提高网络的重建性能,产生更高质量的人脸图像。

    一种农作物种植种类推荐信息处理装置、方法及存储介质

    公开(公告)号:CN111488520A

    公开(公告)日:2020-08-04

    申请号:CN202010198233.2

    申请日:2020-03-19

    摘要: 本发明提供一种农作物种植种类推荐信息处理装置、方法及存储介质,装置包括:土壤原始数据采集模块、合成处理模块、土壤合成数据集计算模块、目标参数计算模块和推荐信息获得模块,土壤原始数据采集模块用于从待测土壤中采集多个土壤原始数据,根据多个土壤原始数据得到土壤原始数据集;合成处理模块用于将土壤原始数据集进行合成处理,得到土壤合成数据集;土壤合成数据集计算模块用于对土壤合成数据集进行计算,得到目标参数,目标参数用于计算目标平面Z;目标参数计算模块用于对目标参数进行计算,得到目标平面Z。本发明解决了土壤数据不平衡问题、小样本多分类问题,减少种植决策者的主观意向和其他客观因素影响。

    基于图像处理的梁底裂纹检测方法、系统、装置及介质

    公开(公告)号:CN111008956A

    公开(公告)日:2020-04-14

    申请号:CN201911103773.1

    申请日:2019-11-13

    IPC分类号: G06T7/00 G06T3/40 G06T7/60

    摘要: 本发明涉及一种基于图像处理的梁底裂纹检测方法、系统、装置和介质,方法包括获取桥梁底面的多个原始裂纹图像,并对所有原始裂纹图像进行预处理,得到多个处理裂纹图像;从所有处理裂纹图像中获取多个待拼接裂纹图像,基于SURF图像处理方法,将所有待拼接裂纹图像进行拼接,得到待检测裂纹图像;获取预设的神经网络裂纹检测模型,并利用所述神经网络裂纹检测模型对所述待检测裂纹图像进行检测,得到目标裂纹图像;对所述目标裂纹图像进行分析,得到裂纹检测数据。本发明能避免图像拍摄距离对梁底裂纹识别和检测的影响,提高裂纹检测精度,能够避免微小裂纹的图像被当做噪声过滤掉,极其适用于微小裂纹的检测。

    一种图像超分辨率重建方法、系统及计算机存储介质

    公开(公告)号:CN110458758B

    公开(公告)日:2022-04-29

    申请号:CN201910687010.X

    申请日:2019-07-29

    IPC分类号: G06T3/40 G06T5/50

    摘要: 本发明涉及一种图像超分辨率重建方法、系统及计算机存储介质,其方法包括以下步骤,S1,将原始图像重塑为固定大小尺寸的图像,得到原始高分辨率图像,将原始高分辨率图像进行插值下采样,得到低分辨率图像;S2,基于生成网络对低分辨率图像进行基于边缘增强的超分辨率重建,得到超分辨率图像;S3,基于判别网络和原始高分辨率图像对超分辨率图像进行真伪判别。本发明其将单一的低分辨图像通过边缘细节信息增强表达,在原始超分辨率重建生成网络中加入边缘增强融合网络提高了图像超分辨率重建性能,获得更清晰的重建图像;另外,判别网络也可以提升边缘增强生成对抗网络的重建性能。