基于模块化深度学习的材料属性预测方法和装置

    公开(公告)号:CN119560066A

    公开(公告)日:2025-03-04

    申请号:CN202411544227.2

    申请日:2024-10-31

    Abstract: 本发明提供一种基于模块化深度学习的材料属性预测方法和装置,应用于云端材料知识共享平台,云端材料知识共享平台加载有材料知识库,材料知识库包括:多组参数模块,一组参数模块对应一个异质材料任务,异质材料任务用于实现材料的属性预测;方法包括:接收用户上传的目标材料的目标属性预测问题;基于目标属性预测问题在材料知识库中查询,确定对应的目标参数模块,并将目标参数模块返回至用户;其中,目标参数模块用于:使用户基于目标参数模块训练模型,并基于训练后的模型进行目标材料的属性预测。通过本发明提供的方法,从材料知识库中选取与给定下游任务最相关的模块,有效适配下游材料属性预测任务。

    任务型对话系统的对话状态跟踪、训练方法及系统

    公开(公告)号:CN111611347A

    公开(公告)日:2020-09-01

    申请号:CN202010443243.8

    申请日:2020-05-22

    Abstract: 本发明公开了一种任务型对话系统的对话状态跟踪、训练方法及系统,提高了多领域复杂场景中的对话状态跟踪准确率。其技术方案为:对话历史进行预处理,获得以词为单位的对话历史文本的向量化表示;对向量化的对话历史文本,使用双向长短期记忆网络作为编码器进行编码;初始化解码器,解码出目标槽位信息;关注对话历史中的目标槽位信息,通过注意力机制计算对话历史中每个词对于目标槽位的重要程度;判断输入的对话历史中是否提及目标槽位,若提及目标槽位则进行下一步的处理,否则方法结束;从对话历史的向量化表示、对话历史的原始输入以及历史对话状态中分别寻找目标槽位取值,最后据此得到目标槽位的最终取值。

Patent Agency Ranking